Skip to content

Tool

Defines the Tool class for LM tools in the Model Context Protocol standard.

Authors

Dimitrij Ray (dimitrij.ray@gdplabs.id)

References

[1] https://modelcontextprotocol.io/

Tool

Bases: BaseModel

Model Context Protocol (MCP)-style Tool definition.

This class represents a tool that can be used by a language model to interact with the outside world, following the Model Context Protocol (MCP) specification. Tools are defined by their name, description, input and output schemas, and an optional function implementation.

The Tool class supports flexible schema handling, accepting either: 1. Dictionary-based JSON Schema objects 2. Pydantic BaseModel classes

When a Pydantic model is provided, it is automatically converted to a JSON Schema using Pydantic's model_json_schema() method.

Supported use cases include: 1. Creating a tool with dictionary schemas for input/output 2. Creating a tool with Pydantic models for input/output 3. Using the @tool decorator to create a tool from a function's type hints

Attributes:

Name Type Description
name str

A string identifier for the tool, used for programmatic access.

description str

A human-readable description of what the tool does.

input_schema dict[str, Any] | type[BaseModel]

JSON Schema object or Pydantic model defining the expected parameters.

title str | None

Optional display name for the tool.

output_schema dict[str, Any] | type[BaseModel] | None

Optional JSON Schema object or Pydantic model defining the structure of the output.

annotations dict[str, Any] | None

Optional additional tool information for enriching the tool definition. According to MCP, display name precedence is: title, annotations.title, then name.

meta dict[str, Any] | None

Optional additional metadata for internal use by the system. Unlike annotations which provide additional information about the tool for clients, meta is meant for private system-level metadata that shouldn't be exposed to end users.

func Callable

The callable function that implements this tool's behavior.

is_async bool

Whether the tool's function is asynchronous.

__signature__: inspect.Signature property

Expose the underlying function's signature for introspection.

Returns:

Type Description
Signature

inspect.Signature: Signature of the underlying function, or an empty signature if missing.

__call__(*args, **kwargs)

Call the underlying function.

Mirrors the original function's call semantics: 1. If the underlying function is synchronous, returns the result directly. 2. If asynchronous, returns a coroutine that must be awaited.

Parameters:

Name Type Description Default
*args Any

Positional arguments for the function.

()
**kwargs Any

Keyword arguments for the function.

{}

Returns:

Name Type Description
Any Any

Result or coroutine depending on the underlying function.

Raises:

Type Description
ValueError

If no implementation function is defined.

from_google_adk(function_declaration, func=None) classmethod

Create a Tool from a Google ADK function declaration.

Parameters:

Name Type Description Default
function_declaration Any

Google ADK function declaration to convert.

required
func Callable | None

Optional implementation callable for the tool.

None

Returns:

Name Type Description
Tool 'Tool'

Tool instance derived from the Google ADK definition.

from_langchain(langchain_tool) classmethod

Create a Tool from a LangChain tool instance.

Parameters:

Name Type Description Default
langchain_tool Any

LangChain tool implementation to convert.

required

Returns:

Name Type Description
Tool 'Tool'

Tool instance derived from the LangChain representation.

invoke(**kwargs) async

Executes the defined tool with the given parameters.

This method handles both synchronous and asynchronous underlying functions.

Parameters:

Name Type Description Default
**kwargs Any

The parameters to pass to the tool function. These should match the input_schema definition.

{}

Returns:

Name Type Description
Any Any

The result of the tool execution.

Raises:

Type Description
ValueError

If the tool function has not been defined.

TypeError

If the provided parameters don't match the expected schema.

validate_input_schema(v) classmethod

Validate and convert input_schema to JSON Schema dict if it's a Pydantic model.

Parameters:

Name Type Description Default
v Any

The input schema value (dict or Pydantic model).

required

Returns:

Name Type Description
dict

A JSON Schema dict.

Raises:

Type Description
ValueError

If the input schema is not a dict or Pydantic model.

validate_output_schema(v) classmethod

Validate and convert output_schema to JSON Schema dict if it's a Pydantic model.

Parameters:

Name Type Description Default
v Any

The output schema value (dict, Pydantic model, or None).

required

Returns:

Type Description

dict | None: A JSON Schema dict or None.

Raises:

Type Description
ValueError

If the output schema is not None, dict, or Pydantic model.

tool(_func=None, *, name=None, description=None, title=None)

Decorator to convert a function into a Tool.

This decorator analyzes the function signature and type hints to generate the appropriate input_schema and output_schema for the tool.

Note that the output_schema is derived from the function's return type. If the function is annotated with -> None, the output_schema will be empty.

Parameters:

Name Type Description Default
name str | None

Optional name for the tool. Defaults to None, in which case the function name is used.

None
description str | None

Optional description for the tool. Defaults to None, in which case the function's docstring is used.

None
title str | None

Optional display title for the tool. Defaults to None, in which case the function name is used.

None

Returns:

Type Description
Callable[[Callable[P, R]], Callable[P, R]] | Callable[P, R]

Callable[[Callable[P, R]], Callable[P, R]] | Callable[P, R]: If _func is provided, returns a decorated function. Otherwise, returns a decorator that transforms a function into a Tool.

Examples:

@tool(description="Get weather information")
async def fetch_weather(location: str, units: str = "metric") -> dict:
    '''Get weather information for a location.'''
    # Implementation
    return {"temperature": 22.5, "conditions": "sunny"}

# The function can be used normally
result = await fetch_weather("New York", "imperial")

The decorator returns an instance of Tool that is callable and preserves key function metadata (e.g., __signature__, __doc__). You can access the Tool attributes directly on the decorated function name:

# After decoration, `fetch_weather` is a Tool instance
fetch_weather.name            # str: tool identifier (defaults to function name)
fetch_weather.title           # str | None: display title if provided
fetch_weather.description     # str | None: description (defaults to function docstring)
fetch_weather.input_schema    # BaseModel: Constructed Pydantic model for input (derived from type hints)
fetch_weather.output_schema   # BaseModel | None: Constructed Pydantic model for output (derived from return type)
fetch_weather.is_async        # bool: whether the underlying function is async

# You can call it directly (mirrors the original function semantics)
result = await fetch_weather(location="Tokyo", units="metric")

# Or use the unified invoke() helper (works for both sync and async implementations)
result = await fetch_weather.invoke(location="Tokyo", units="metric")