Lm Invoker
Modules concerning the language model invokers used in Gen AI applications.
AnthropicLMInvoker(model_name, api_key=None, model_kwargs=None, default_hyperparameters=None, tools=None, response_schema=None, output_analytics=False, retry_config=None, thinking=False, thinking_budget=DEFAULT_THINKING_BUDGET, use_thinking=False, output_thinking=False, bind_tools_params=None, with_structured_output_params=None)
Bases: BaseLMInvoker
A language model invoker to interact with Anthropic language models.
Attributes:
Name | Type | Description |
---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the language model. |
client |
AsyncAnthropic
|
The Anthropic client instance. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Tool]
|
Tools provided to the model to enable tool calling. |
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
retry_config |
RetryConfig
|
The retry configuration for the language model. |
thinking |
bool
|
Whether to enable thinking. Only allowed for thinking models. |
thinking_budget |
int
|
The tokens allocated for the thinking process. Only allowed for thinking models. |
output_thinking |
bool
|
Whether to output the thinking token. Will be removed in v0.5.0, where the thinking token will always be included in the output when thinking is enabled. |
Basic usage
The AnthropicLMInvoker
can be used as follows:
lm_invoker = AnthropicLMInvoker(model_name="claude-sonnet-4-20250514")
result = await lm_invoker.invoke("Hi there!")
Input types
The AnthropicLMInvoker
supports the following input types:
1. Text.
2. Document: ".pdf".
3. Image: ".jpg", ".jpeg", ".png", ".gif", and ".webp".
Non-text inputs must be of valid file extensions and can be passed as an Attachment
object.
Non-text inputs can only be passed with the user
role.
Usage example:
text = "What animal is in this image?"
image = Attachment.from_path("path/to/local/image.png")
prompt = [(PromptRole.USER, [text, image])]
result = await lm_invoker.invoke(prompt)
Tool calling
Tool calling is a feature that allows the language model to call tools to perform tasks.
Tools can be passed to the via the tools
parameter as a list of LangChain's Tool
objects.
When tools are provided and the model decides to call a tool, the tool calls are stored in the
tool_calls
attribute in the output.
Usage example:
lm_invoker = AnthropicLMInvoker(..., tools=[tool_1, tool_2])
Output example:
LMOutput(
response="Let me call the tools...",
tool_calls=[
ToolCall(id="123", name="tool_1", args={"key": "value"}),
ToolCall(id="456", name="tool_2", args={"key": "value"}),
]
)
Structured output
Structured output is a feature that allows the language model to output a structured response.
This feature can be enabled by providing a schema to the response_schema
parameter.
The schema must be either a JSON schema dictionary or a Pydantic BaseModel class.
If JSON schema is used, it must be compatible with Pydantic's JSON schema, especially for complex schemas.
For this reason, it is recommended to create the JSON schema using Pydantic's model_json_schema
method.
Structured output is achieved by providing the schema name in the tool_choice
parameter. This forces
the model to call the provided schema as a tool. Thus, structured output is not compatible with:
1. Tool calling, since the tool calling is reserved to force the model to call the provided schema as a tool.
2. Thinking, since thinking is not allowed when a tool use is forced through the tool_choice
parameter.
The language model also doesn't need to stream anything when structured output is enabled. Thus, standard
invocation will be performed regardless of whether the event_emitter
parameter is provided or not.
When enabled, the structured output is stored in the structured_output
attribute in the output.
1. If the schema is a JSON schema dictionary, the structured output is a dictionary.
2. If the schema is a Pydantic BaseModel class, the structured output is a Pydantic model.
Example 1: Using a JSON schema dictionary
Usage example:
schema = {
"title": "Animal",
"description": "A description of an animal.",
"properties": {
"color": {"title": "Color", "type": "string"},
"name": {"title": "Name", "type": "string"},
},
"required": ["name", "color"],
"type": "object",
}
lm_invoker = AnthropicLMInvoker(..., response_schema=schema)
Output example:
LMOutput(structured_output={"name": "Golden retriever", "color": "Golden"})
Example 2: Using a Pydantic BaseModel class
Usage example:
class Animal(BaseModel):
name: str
color: str
lm_invoker = AnthropicLMInvoker(..., response_schema=Animal)
Output example:
LMOutput(structured_output=Animal(name="Golden retriever", color="Golden"))
Analytics tracking
Analytics tracking is a feature that allows the module to output additional information about the invocation.
This feature can be enabled by setting the output_analytics
parameter to True
.
When enabled, the following attributes will be stored in the output:
1. token_usage
: The token usage.
2. duration
: The duration in seconds.
3. finish_details
: The details about how the generation finished.
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
token_usage=TokenUsage(input_tokens=100, output_tokens=50),
duration=0.729,
finish_details={"stop_reason": "end_turn"},
)
Retry and timeout
The AnthropicLMInvoker
supports retry and timeout configuration.
By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
They can be customized by providing a custom RetryConfig
object to the retry_config
parameter.
Retry config examples:
retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
Usage example:
lm_invoker = AnthropicLMInvoker(..., retry_config=retry_config)
Thinking
Thinking is a feature that allows the language model to have enhanced reasoning capabilities for complex tasks,
while also providing transparency into its step-by-step thought process before it delivers its final answer.
This feature is only available for certain models, starting from Claude 3.7 Sonnet.
It can be enabled by setting the thinking
parameter to True
.
When thinking is enabled, the amount of tokens allocated for the thinking process can be set via the
thinking_budget
parameter. The thinking_budget
:
1. Must be greater than or equal to 1024.
2. Must be less than the max_tokens
hyperparameter, as the thinking_budget
is allocated from the
max_tokens
. For example, if max_tokens=2048
and thinking_budget=1024
, the language model will
allocate at most 1024 tokens for thinking and the remaining 1024 tokens for generating the response.
When enabled, the reasoning is stored in the reasoning
attribute in the output.
Note: Before v0.5.0, this has to be set explicitly via the output_thinking
parameter.
Starting from v0.5.0, the reasoning will always be included in the output when thinking is enabled.
Usage example:
lm_invoker = AnthropicLMInvoker(..., thinking=True, thinking_budget=1024)
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
reasoning=[Reasoning(type="thinking", reasoning="Let me think about it...", signature="x")],
)
When streaming is enabled, the thinking token will be streamed with the EventType.DATA
event type.
Streaming output example:
{"type": "data", "value": '{"data_type": "thinking_start", "data_value": ""}', ...}
{"type": "data", "value": '{"data_type": "thinking", "data_value": "Let me think "}', ...}
{"type": "data", "value": '{"data_type": "thinking", "data_value": "about it..."}', ...}
{"type": "data", "value": '{"data_type": "thinking_end", "data_value": ""}', ...}
{"type": "response", "value": "Golden retriever ", ...}
{"type": "response", "value": "is a good dog breed.", ...}
Output types
The output of the AnthropicLMInvoker
is of type MultimodalOutput
, which is a type alias that can represent:
1. str
: The text response if no additional output is needed.
2. LMOutput
: A Pydantic model with the following attributes if any additional output is needed:
2.1. response (str): The text response.
2.2. tool_calls (list[ToolCall]): The tool calls, if the tools
parameter is defined and the language
model decides to invoke tools. Defaults to an empty list.
2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the response_schema
parameter is defined. Defaults to None.
2.4. token_usage (TokenUsage | None): The token usage information, if the output_analytics
parameter is
set to True
. Defaults to None.
2.5. duration (float | None): The duration of the invocation in seconds, if the output_analytics
parameter is set to True
. Defaults to None.
2.6. finish_details (dict[str, Any]): The details about how the generation finished, if the
output_analytics
parameter is set to True
. Defaults to an empty dictionary.
2.7. reasoning (list[Reasoning]): The reasoning objects, if the thinking
parameter is set to True
.
Defaults to an empty list.
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
Defaults to an empty list.
Initializes the AnthropicLmInvoker instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name |
str
|
The name of the Anthropic language model. |
required |
api_key |
str | None
|
The Anthropic API key. Defaults to None, in which case the
|
None
|
model_kwargs |
dict[str, Any] | None
|
Additional keyword arguments for the Anthropic client. |
None
|
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|
tools |
list[Tool] | None
|
Tools provided to the model to enable tool calling. Defaults to None. |
None
|
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. Defaults to None. |
None
|
output_analytics |
bool
|
Whether to output the invocation analytics. Defaults to False. |
False
|
retry_config |
RetryConfig | None
|
The retry configuration for the language model. Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used. |
None
|
thinking |
bool
|
Whether to enable thinking. Only allowed for thinking models. Defaults to False. |
False
|
thinking_budget |
int
|
The tokens allocated for the thinking process. Must be greater than or equal to 1024. Only allowed for thinking models. Defaults to DEFAULT_THINKING_BUDGET. |
DEFAULT_THINKING_BUDGET
|
use_thinking |
bool
|
Deprecated parameter to enable thinking. Defaults to False. |
False
|
output_thinking |
bool
|
Deprecated parameter to output the thinking token. Starting from v0.5.0, the thinking token will always be included in the output when thinking is enabled. Defaults to False. |
False
|
bind_tools_params |
dict[str, Any] | None
|
Deprecated parameter to add tool calling capability.
If provided, must at least include the |
None
|
with_structured_output_params |
dict[str, Any] | None
|
Deprecated parameter to instruct the
model to produce output with a certain schema. If provided, must at least include the |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
|
2. `thinking` is True and `tools` are provided, but `output_thinking` is False. # TODO
|
Remove in v0.5.0 |
set_response_schema(response_schema)
Sets the response schema for the Anthropic language model.
This method sets the response schema for the Anthropic language model. Any existing response schema will be replaced.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
response_schema |
ResponseSchema | None
|
The response schema to be used. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If |
set_tools(tools)
Sets the tools for the Anthropic language model.
This method sets the tools for the Anthropic language model. Any existing tools will be replaced.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tools |
list[Tool]
|
The list of tools to be used. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If |
AzureOpenAILMInvoker(azure_endpoint, azure_deployment, api_key=None, api_version=DEFAULT_AZURE_OPENAI_API_VERSION, model_kwargs=None, default_hyperparameters=None, tools=None, response_schema=None, output_analytics=False, retry_config=None, reasoning_effort=None, reasoning_summary=None, bind_tools_params=None, with_structured_output_params=None)
Bases: OpenAILMInvoker
A language model invoker to interact with Azure OpenAI language models.
Attributes:
Name | Type | Description |
---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the Azure OpenAI language model deployment. |
client |
AsyncAzureOpenAI
|
The Azure OpenAI client instance. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Any]
|
The list of tools provided to the model to enable tool calling. |
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
retry_config |
RetryConfig
|
The retry configuration for the language model. |
reasoning_effort |
ReasoningEffort | None
|
The reasoning effort for reasoning models. Not allowed for non-reasoning models. If None, the model will perform medium reasoning effort. |
reasoning_summary |
ReasoningSummary | None
|
The reasoning summary level for reasoning models. Not allowed for non-reasoning models. If None, no summary will be generated. |
code_interpreter |
bool
|
Whether to enable the code interpreter. Currently not supported. |
web_search |
bool
|
Whether to enable the web search. Currently not supported. |
Basic usage
The AzureOpenAILMInvoker
can be used as follows:
lm_invoker = AzureOpenAILMInvoker(
azure_endpoint="https://<your-azure-openai-endpoint>.openai.azure.com/",
azure_deployment="<your-azure-openai-deployment>",
)
result = await lm_invoker.invoke("Hi there!")
Input types
- Text.
- Document: ".pdf".
- Image: ".jpg", ".jpeg", ".png", ".gif", and ".webp".
Non-text inputs must be of valid file extensions and can be passed as an
Attachment
object.
Non-text inputs can only be passed with the user
role.
Usage example:
text = "What animal is in this image?"
image = Attachment.from_path("path/to/local/image.png")
prompt = [(PromptRole.USER, [text, image])]
result = await lm_invoker.invoke(prompt)
Tool calling
Tool calling is a feature that allows the language model to call tools to perform tasks.
Tools can be passed to the via the tools
parameter as a list of LangChain's Tool
objects.
When tools are provided and the model decides to call a tool, the tool calls are stored in the
tool_calls
attribute in the output.
Usage example:
lm_invoker = AzureOpenAILMInvoker(..., tools=[tool_1, tool_2])
Output example:
LMOutput(
response="Let me call the tools...",
tool_calls=[
ToolCall(id="123", name="tool_1", args={"key": "value"}),
ToolCall(id="456", name="tool_2", args={"key": "value"}),
]
)
Structured output
Structured output is a feature that allows the language model to output a structured response.
This feature can be enabled by providing a schema to the response_schema
parameter.
The schema must be either a JSON schema dictionary or a Pydantic BaseModel class.
If JSON schema is used, it must be compatible with Pydantic's JSON schema, especially for complex schemas.
For this reason, it is recommended to create the JSON schema using Pydantic's model_json_schema
method.
The language model also doesn't need to stream anything when structured output is enabled. Thus, standard
invocation will be performed regardless of whether the event_emitter
parameter is provided or not.
When enabled, the structured output is stored in the structured_output
attribute in the output.
1. If the schema is a JSON schema dictionary, the structured output is a dictionary.
2. If the schema is a Pydantic BaseModel class, the structured output is a Pydantic model.
Example 1: Using a JSON schema dictionary
Usage example:
schema = {
"title": "Animal",
"description": "A description of an animal.",
"properties": {
"color": {"title": "Color", "type": "string"},
"name": {"title": "Name", "type": "string"},
},
"required": ["name", "color"],
"type": "object",
}
lm_invoker = AzureOpenAILMInvoker(..., response_schema=schema)
Output example:
LMOutput(structured_output={"name": "Golden retriever", "color": "Golden"})
Example 2: Using a Pydantic BaseModel class
Usage example:
class Animal(BaseModel):
name: str
color: str
lm_invoker = AzureOpenAILMInvoker(..., response_schema=Animal)
Output example:
LMOutput(structured_output=Animal(name="Golden retriever", color="Golden"))
Analytics tracking
Analytics tracking is a feature that allows the module to output additional information about the invocation.
This feature can be enabled by setting the output_analytics
parameter to True
.
When enabled, the following attributes will be stored in the output:
1. token_usage
: The token usage.
2. duration
: The duration in seconds.
3. finish_details
: The details about how the generation finished.
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
token_usage=TokenUsage(input_tokens=100, output_tokens=50),
duration=0.729,
finish_details={"status": "completed", "incomplete_details": {"reason": None}},
)
Retry and timeout
The AzureOpenAILMInvoker
supports retry and timeout configuration.
By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
They can be customized by providing a custom RetryConfig
object to the retry_config
parameter.
Retry config examples:
retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
Usage example:
lm_invoker = AzureOpenAILMInvoker(..., retry_config=retry_config)
Reasoning
Azure OpenAI's o-series models are classified as reasoning models. Reasoning models think before they answer, producing a long internal chain of thought before responding to the user. Reasoning models excel in complex problem solving, coding, scientific reasoning, and multi-step planning for agentic workflows.
The reasoning effort of reasoning models can be set via the reasoning_effort
parameter. This parameter
will guide the models on how many reasoning tokens it should generate before creating a response to the prompt.
Available options include:
1. "low": Favors speed and economical token usage.
2. "medium": Favors a balance between speed and reasoning accuracy.
3. "high": Favors more complete reasoning at the cost of more tokens generated and slower responses.
When not set, the reasoning effort will be equivalent to medium
by default.
Azure OpenAI doesn't expose the raw reasoning tokens. However, the summary of the reasoning tokens can still be
generated. The summary level can be set via the reasoning_summary
parameter. Available options include:
1. "auto": The model decides the summary level automatically.
2. "detailed": The model will generate a detailed summary of the reasoning tokens.
Reasoning summary is not compatible with tool calling.
When enabled, the reasoning summary will be stored in the reasoning
attribute in the output.
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
reasoning=[Reasoning(id="x", reasoning="Let me think about it...")],
)
When streaming is enabled along with reasoning summary, the reasoning summary token will be streamed with the
EventType.DATA
event type.
Streaming output example:
{"type": "data", "value": "Let me think ", ...} # Reasoning summary token
{"type": "data", "value": "about it...", ...} # Reasoning summary token
{"type": "response", "value": "Golden retriever ", ...} # Response token
{"type": "response", "value": "is a good dog breed.", ...} # Response token
Setting reasoning-related parameters for non-reasoning models will raise an error.
Output types
The output of the AzureOpenAILMInvoker
is of type MultimodalOutput
, which is a type alias that can
represent:
1. str
: The text response if no additional output is needed.
2. LMOutput
: A Pydantic model with the following attributes if any additional output is needed:
2.1. response (str): The text response.
2.2. tool_calls (list[ToolCall]): The tool calls, if the tools
parameter is defined and the language
model decides to invoke tools. Defaults to an empty list.
2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the response_schema
parameter is defined. Defaults to None.
2.4. token_usage (TokenUsage | None): The token usage analytics, if the output_analytics
parameter is
set to True
. Defaults to None.
2.5. duration (float | None): The duration of the invocation in seconds, if the output_analytics
parameter is set to True
. Defaults to None.
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
output_analytics
parameter is set to True
. Defaults to None.
2.7. reasoning (list[Reasoning]): The reasoning objects, if the reasoning_summary
parameter is provided
for reasoning models. Defaults to an empty list.
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
Defaults to an empty list.
Initializes a new instance of the AzureOpenAILMInvoker class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
azure_endpoint |
str
|
The endpoint of the Azure OpenAI service. |
required |
azure_deployment |
str
|
The deployment name of the Azure OpenAI service. |
required |
api_key |
str | None
|
The API key for authenticating with Azure OpenAI. Defaults to None, in
which case the |
None
|
api_version |
str
|
The API version of the Azure OpenAI service. Defaults to
|
DEFAULT_AZURE_OPENAI_API_VERSION
|
model_kwargs |
dict[str, Any] | None
|
Additional model parameters. Defaults to None. |
None
|
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|
tools |
list[Tool] | None
|
Tools provided to the language model to enable tool calling. Defaults to None. |
None
|
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. Defaults to None. |
None
|
output_analytics |
bool
|
Whether to output the invocation analytics. Defaults to False. |
False
|
retry_config |
RetryConfig | None
|
The retry configuration for the language model. Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used. |
None
|
reasoning_effort |
ReasoningEffort | None
|
The reasoning effort for reasoning models. Not allowed for non-reasoning models. If None, the model will perform medium reasoning effort. Defaults to None. |
None
|
reasoning_summary |
ReasoningSummary | None
|
The reasoning summary level for reasoning models. Not allowed for non-reasoning models. If None, no summary will be generated. Defaults to None. |
None
|
bind_tools_params |
dict[str, Any] | None
|
Deprecated parameter to add tool calling capability.
If provided, must at least include the |
None
|
with_structured_output_params |
dict[str, Any] | None
|
Deprecated parameter to instruct the
model to produce output with a certain schema. If provided, must at least include the |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
|
BedrockLMInvoker(model_name, access_key_id=None, secret_access_key=None, region_name='us-east-1', model_kwargs=None, default_hyperparameters=None, tools=None, response_schema=None, output_analytics=False, retry_config=None)
Bases: BaseLMInvoker
A language model invoker to interact with AWS Bedrock language models.
Attributes:
Name | Type | Description |
---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the language model. |
session |
Session
|
The Bedrock client session. |
client_kwargs |
dict[str, Any]
|
The Bedrock client kwargs. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Tool]
|
Tools provided to the model to enable tool calling. |
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
retry_config |
RetryConfig
|
The retry configuration for the language model. |
Basic usage
The BedrockLMInvoker
can be used as follows:
lm_invoker = BedrockLMInvoker(
model_name="us.anthropic.claude-sonnet-4-20250514-v1:0",
aws_access_key_id="<your-aws-access-key-id>",
aws_secret_access_key="<your-aws-secret-access-key>",
)
result = await lm_invoker.invoke("Hi there!")
Input types
The BedrockLMInvoker
supports the following input types:
1. Text.
2. Document: ".pdf", ".csv", ".doc", ".docx", ".xls", ".xlsx", ".html", ".txt", ".md".
3. Image: ".png", ".jpeg", ".gif", ".webp".
4. Video: ".mkv", ".mov", ".mp4", ".webm", ".flv", ".mpeg", ".mpg", ".wmv", ".three_gp".
Non-text inputs must be of valid file extensions and can be passed as an Attachment
object.
Non-text inputs can only be passed with the user
role.
Usage example:
text = "What animal is in this image?"
image = Attachment.from_path("path/to/local/image.png")
prompt = [(PromptRole.USER, [text, image])]
result = await lm_invoker.invoke(prompt)
Tool calling
Tool calling is a feature that allows the language model to call tools to perform tasks.
Tools can be passed to the via the tools
parameter as a list of LangChain's Tool
objects.
When tools are provided and the model decides to call a tool, the tool calls are stored in the
tool_calls
attribute in the output.
Usage example:
lm_invoker = BedrockLMInvoker(..., tools=[tool_1, tool_2])
Output example:
LMOutput(
response="Let me call the tools...",
tool_calls=[
ToolCall(id="123", name="tool_1", args={"key": "value"}),
ToolCall(id="456", name="tool_2", args={"key": "value"}),
]
)
Structured output
Structured output is a feature that allows the language model to output a structured response.
This feature can be enabled by providing a schema to the response_schema
parameter.
The schema must be either a JSON schema dictionary or a Pydantic BaseModel class.
If JSON schema is used, it must be compatible with Pydantic's JSON schema, especially for complex schemas.
For this reason, it is recommended to create the JSON schema using Pydantic's model_json_schema
method.
Structured output is achieved by providing the schema name in the tool_choice
parameter. This forces
the model to call the provided schema as a tool. Thus, structured output is not compatible with tool calling,
since the tool calling is reserved to force the model to call the provided schema as a tool.
The language model also doesn't need to stream anything when structured output is enabled. Thus, standard
invocation will be performed regardless of whether the event_emitter
parameter is provided or not.
When enabled, the structured output is stored in the structured_output
attribute in the output.
1. If the schema is a JSON schema dictionary, the structured output is a dictionary.
2. If the schema is a Pydantic BaseModel class, the structured output is a Pydantic model.
Example 1: Using a JSON schema dictionary
Usage example:
schema = {
"title": "Animal",
"description": "A description of an animal.",
"properties": {
"color": {"title": "Color", "type": "string"},
"name": {"title": "Name", "type": "string"},
},
"required": ["name", "color"],
"type": "object",
}
lm_invoker = BedrockLMInvoker(..., response_schema=schema)
Output example:
LMOutput(structured_output={"name": "Golden retriever", "color": "Golden"})
Example 2: Using a Pydantic BaseModel class
Usage example:
class Animal(BaseModel):
name: str
color: str
lm_invoker = BedrockLMInvoker(..., response_schema=Animal)
Output example:
LMOutput(structured_output=Animal(name="Golden retriever", color="Golden"))
Analytics tracking
Analytics tracking is a feature that allows the module to output additional information about the invocation.
This feature can be enabled by setting the output_analytics
parameter to True
.
When enabled, the following attributes will be stored in the output:
1. token_usage
: The token usage.
2. duration
: The duration in seconds.
3. finish_details
: The details about how the generation finished.
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
token_usage=TokenUsage(input_tokens=100, output_tokens=50),
duration=0.729,
finish_details={"stop_reason": "end_turn"},
)
Retry and timeout
The BedrockLMInvoker
supports retry and timeout configuration.
By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
They can be customized by providing a custom RetryConfig
object to the retry_config
parameter.
Retry config examples:
retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
Usage example:
lm_invoker = BedrockLMInvoker(..., retry_config=retry_config)
Output types
The output of the BedrockLMInvoker
is of type MultimodalOutput
, which is a type alias that can represent:
1. str
: The text response if no additional output is needed.
2. LMOutput
: A Pydantic model with the following attributes if any additional output is needed:
2.1. response (str): The text response.
2.2. tool_calls (list[ToolCall]): The tool calls, if the tools
parameter is defined and the language
model decides to invoke tools. Defaults to an empty list.
2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the response_schema
parameter is defined. Defaults to None.
2.4. token_usage (TokenUsage | None): The token usage information, if the output_analytics
parameter is
set to True
. Defaults to None.
2.5. duration (float | None): The duration of the invocation in seconds, if the output_analytics
parameter is set to True
. Defaults to None.
2.6. finish_details (dict[str, Any]): The details about how the generation finished, if the
output_analytics
parameter is set to True
. Defaults to an empty dictionary.
2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
Defaults to an empty list.
Initializes the BedrockLMInvoker instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name |
str
|
The name of the Bedrock language model. |
required |
access_key_id |
str | None
|
The AWS access key ID. Defaults to None, in which case
the |
None
|
secret_access_key |
str | None
|
The AWS secret access key. Defaults to None, in which case
the |
None
|
region_name |
str
|
The AWS region name. Defaults to "us-east-1". |
'us-east-1'
|
model_kwargs |
dict[str, Any] | None
|
Additional keyword arguments for the Bedrock client. |
None
|
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|
tools |
list[Tool] | None
|
Tools provided to the model to enable tool calling. Defaults to None. |
None
|
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. Defaults to None. |
None
|
output_analytics |
bool
|
Whether to output the invocation analytics. Defaults to False. |
False
|
retry_config |
RetryConfig | None
|
The retry configuration for the language model. Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used. |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If |
ValueError
|
If |
set_response_schema(response_schema)
Sets the response schema for the Bedrock language model.
This method sets the response schema for the Bedrock language model. Any existing response schema will be replaced.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
response_schema |
ResponseSchema | None
|
The response schema to be used. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If |
set_tools(tools)
Sets the tools for the Bedrock language model.
This method sets the tools for the Bedrock language model. Any existing tools will be replaced.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tools |
list[Tool]
|
The list of tools to be used. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If |
DatasaurLMInvoker(base_url, api_key=None, model_kwargs=None, default_hyperparameters=None, output_analytics=False, retry_config=None, citations=False)
Bases: OpenAICompatibleLMInvoker
A language model invoker to interact with Datasaur LLM Projects Deployment API.
Attributes:
Name | Type | Description |
---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the language model. |
client |
AsyncOpenAI
|
The OpenAI client instance. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Any]
|
The list of tools provided to the model to enable tool calling. Currently not supported. |
response_schema |
ResponseSchema | None
|
The schema of the response. Currently not supported. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
retry_config |
RetryConfig | None
|
The retry configuration for the language model. |
citations |
bool
|
Whether to output the citations. |
Basic usage
The DatasaurLMInvoker
can be used as follows:
lm_invoker = DatasaurLMInvoker(base_url="https://deployment.datasaur.ai/api/deployment/teamId/deploymentId/")
result = await lm_invoker.invoke("Hi there!")
Input types
- Text.
- Audio, with extensions depending on the language model's capabilities.
- Image, with extensions depending on the language model's capabilities.
- Document, with extensions depending on the language model's capabilities.
Non-text inputs must be of valid file extensions and can be passed as an
Attachment
object.
Non-text inputs can only be passed with the user
role.
Usage example:
text = "What animal is in this image?"
image = Attachment.from_path("path/to/local/image.png")
prompt = [(PromptRole.USER, [text, image])]
result = await lm_invoker.invoke(prompt)
Analytics tracking
Analytics tracking is a feature that allows the module to output additional information about the invocation.
This feature can be enabled by setting the output_analytics
parameter to True
.
When enabled, the following attributes will be stored in the output:
1. token_usage
: The token usage.
2. duration
: The duration in seconds.
3. finish_details
: The details about how the generation finished.
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
token_usage=TokenUsage(input_tokens=100, output_tokens=50),
duration=0.729,
finish_details={"finish_reason": "stop"},
)
When streaming is enabled, token usage is not supported. Therefore, the token_usage
attribute will be None
regardless of the value of the output_analytics
parameter.
Retry and timeout
The DatasaurLMInvoker
supports retry and timeout configuration.
By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
They can be customized by providing a custom RetryConfig
object to the retry_config
parameter.
Retry config examples:
retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
Usage example:
lm_invoker = DatasaurLMInvoker(..., retry_config=retry_config)
Citations
The DatasaurLMInvoker
can be configured to output the citations used to generate the response.
They can be enabled by setting the citations
parameter to True
.
When enabled, the citations will be stored as Chunk
objects in the citations
attribute in the output.
Usage example:
lm_invoker = DatasaurLMInvoker(..., citations=True)
Output example:
LMOutput(
response="The winner of the match is team A ([Example title](https://www.example.com)).",
citations=[Chunk(id="123", content="...", metadata={...}, score=0.95)],
)
Output types
The output of the DatasaurLMInvoker
is of type MultimodalOutput
, which is a type alias that can represent:
1. str
: The text response if no additional output is needed.
2. LMOutput
: A Pydantic model with the following attributes if any additional output is needed:
2.1. response (str): The text response.
2.2. tool_calls (list[ToolCall]): The tool calls. Currently not supported. Defaults to an empty list.
2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output. Currently not supported.
Defaults to None.
2.4. token_usage (TokenUsage | None): The token usage analytics, if the output_analytics
parameter is
set to True
. Defaults to None.
2.5. duration (float | None): The duration of the invocation in seconds, if the output_analytics
parameter is set to True
. Defaults to None.
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
output_analytics
parameter is set to True
. Defaults to None.
2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
Defaults to an empty list.
Initializes a new instance of the DatasaurLMInvoker class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
base_url |
str
|
The base URL of the Datasaur LLM Projects Deployment API. |
required |
api_key |
str | None
|
The API key for authenticating with Datasaur LLM Projects Deployment API.
Defaults to None, in which case the |
None
|
model_kwargs |
dict[str, Any] | None
|
Additional model parameters. Defaults to None. |
None
|
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|
output_analytics |
bool
|
Whether to output the invocation analytics. Defaults to False. |
False
|
retry_config |
RetryConfig | None
|
The retry configuration for the language model. Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used. |
None
|
citations |
bool
|
Whether to output the citations. Defaults to False. |
False
|
Raises:
Type | Description |
---|---|
ValueError
|
If the |
set_response_schema(response_schema)
Sets the response schema for the Datasaur LLM Projects Deployment API.
This method is raises a NotImplementedError
because the Datasaur LLM Projects Deployment API does not
support response schema.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
response_schema |
ResponseSchema | None
|
The response schema to be used. |
required |
Raises:
Type | Description |
---|---|
NotImplementedError
|
This method is not supported for the Datasaur LLM Projects Deployment API. |
set_tools(tools)
Sets the tools for the Datasaur LLM Projects Deployment API.
This method is raises a NotImplementedError
because the Datasaur LLM Projects Deployment API does not
support tools.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tools |
list[Tool]
|
The list of tools to be used. |
required |
Raises:
Type | Description |
---|---|
NotImplementedError
|
This method is not supported for the Datasaur LLM Projects Deployment API. |
GoogleGenerativeAILMInvoker(model_name, api_key, model_kwargs=None, default_hyperparameters=None, tools=None, response_schema=None, output_analytics=False, retry_config=None, bind_tools_params=None, with_structured_output_params=None)
Bases: GoogleLMInvoker
A language model invoker to interact with Google Gen AI language models.
This class has been deprecated as Google Generative AI is now supported through GoogleLMInvoker
.
This class is maintained for backward compatibility and will be removed in version 0.5.0.
Attributes:
Name | Type | Description |
---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the language model. |
client |
Client
|
The Google client instance. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Any]
|
The list of tools provided to the model to enable tool calling. |
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
retry_config |
RetryConfig | None
|
The retry configuration for the language model. |
Initializes a new instance of the GoogleGenerativeAILMInvoker class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name |
str
|
The name of the multimodal language model to be used. |
required |
api_key |
str
|
The API key for authenticating with Google Gen AI. |
required |
model_kwargs |
dict[str, Any] | None
|
Additional keyword arguments for the Google Generative AI client. |
None
|
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|
tools |
list[Tool] | None
|
Tools provided to the language model to enable tool calling. Defaults to None. |
None
|
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. Defaults to None. |
None
|
output_analytics |
bool
|
Whether to output the invocation analytics. Defaults to False. |
False
|
retry_config |
RetryConfig | None
|
The retry configuration for the language model. Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used. |
None
|
bind_tools_params |
dict[str, Any] | None
|
Deprecated parameter to add tool calling capability.
If provided, must at least include the |
None
|
with_structured_output_params |
dict[str, Any] | None
|
Deprecated parameter to instruct the
model to produce output with a certain schema. If provided, must at least include the |
None
|
GoogleLMInvoker(model_name, api_key=None, credentials_path=None, project_id=None, location='us-central1', model_kwargs=None, default_hyperparameters=None, tools=None, response_schema=None, output_analytics=False, retry_config=None, thinking=None, thinking_budget=DEFAULT_THINKING_BUDGET, bind_tools_params=None, with_structured_output_params=None)
Bases: BaseLMInvoker
A language model invoker to interact with Google language models.
Attributes:
Name | Type | Description |
---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the language model. |
client_params |
dict[str, Any]
|
The Google client instance init parameters. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Any]
|
The list of tools provided to the model to enable tool calling. |
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
retry_config |
RetryConfig | None
|
The retry configuration for the language model. |
thinking |
bool
|
Whether to enable thinking. Only allowed for thinking models. |
thinking_budget |
int
|
The tokens allowed for thinking process. Only allowed for thinking models. If set to -1, the model will control the budget automatically. |
Basic usage
The GoogleLMInvoker
can be used as follows:
lm_invoker = GoogleLMInvoker(model_name="gemini-2.5-flash")
result = await lm_invoker.invoke("Hi there!")
Authentication
The GoogleLMInvoker
can use either Google Gen AI or Google Vertex AI.
Google Gen AI is recommended for quick prototyping and development. It requires a Gemini API key for authentication.
Usage example:
lm_invoker = GoogleLMInvoker(
model_name="gemini-2.5-flash",
api_key="your_api_key"
)
Google Vertex AI is recommended to build production-ready applications. It requires a service account JSON file for authentication.
Usage example:
lm_invoker = GoogleLMInvoker(
model_name="gemini-2.5-flash",
credentials_path="path/to/service_account.json"
)
If neither api_key
nor credentials_path
is provided, Google Gen AI will be used by default.
The GOOGLE_API_KEY
environment variable will be used for authentication.
Input types
- Text.
- Audio: ".aac", ".flac", ".mp3", and ".wav".
- Document: ".pdf", ".txt", ".csv", ".md", ".css", ".html", and ".xml".
- Image: ".jpg", ".jpeg", ".png", and ".webp".
- Video: ".x-flv", ".mpeg", ".mpg", ".mp4", ".webm", ".wmv", and ".3gpp".
Non-text inputs must be of valid file extensions and can be passed as an
Attachment
object.
Non-text inputs can be passed with either the user
or assistant
role.
Usage example:
text = "What animal is in this image?"
image = Attachment.from_path("path/to/local/image.png")
prompt = [(PromptRole.USER, [text, image])]
result = await lm_invoker.invoke(prompt)
Tool calling
Tool calling is a feature that allows the language model to call tools to perform tasks.
Tools can be passed to the via the tools
parameter as a list of LangChain's Tool
objects.
When tools are provided and the model decides to call a tool, the tool calls are stored in the
tool_calls
attribute in the output.
Usage example:
lm_invoker = GoogleLMInvoker(..., tools=[tool_1, tool_2])
Output example:
LMOutput(
response="Let me call the tools...",
tool_calls=[
ToolCall(id="123", name="tool_1", args={"key": "value"}),
ToolCall(id="456", name="tool_2", args={"key": "value"}),
]
)
Structured output
Structured output is a feature that allows the language model to output a structured response.
This feature can be enabled by providing a schema to the response_schema
parameter.
The schema must be either a JSON schema dictionary or a Pydantic BaseModel class.
If JSON schema is used, it must be compatible with Pydantic's JSON schema, especially for complex schemas.
For this reason, it is recommended to create the JSON schema using Pydantic's model_json_schema
method.
Structured output is not compatible with tool calling. The language model also doesn't need to stream
anything when structured output is enabled. Thus, standard invocation will be performed regardless of
whether the event_emitter
parameter is provided or not.
When enabled, the structured output is stored in the structured_output
attribute in the output.
1. If the schema is a JSON schema dictionary, the structured output is a dictionary.
2. If the schema is a Pydantic BaseModel class, the structured output is a Pydantic model.
Example 1: Using a JSON schema dictionary
Usage example:
schema = {
"title": "Animal",
"description": "A description of an animal.",
"properties": {
"color": {"title": "Color", "type": "string"},
"name": {"title": "Name", "type": "string"},
},
"required": ["name", "color"],
"type": "object",
}
lm_invoker = GoogleLMInvoker(..., response_schema=schema)
Output example:
LMOutput(structured_output={"name": "Golden retriever", "color": "Golden"})
Example 2: Using a Pydantic BaseModel class
Usage example:
class Animal(BaseModel):
name: str
color: str
lm_invoker = GoogleLMInvoker(..., response_schema=Animal)
Output example:
LMOutput(structured_output=Animal(name="Golden retriever", color="Golden"))
Analytics tracking
Analytics tracking is a feature that allows the module to output additional information about the invocation.
This feature can be enabled by setting the output_analytics
parameter to True
.
When enabled, the following attributes will be stored in the output:
1. token_usage
: The token usage.
2. duration
: The duration in seconds.
3. finish_details
: The details about how the generation finished.
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
token_usage=TokenUsage(input_tokens=100, output_tokens=50),
duration=0.729,
finish_details={"finish_reason": "STOP", "finish_message": None},
)
Retry and timeout
The GoogleLMInvoker
supports retry and timeout configuration.
By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
They can be customized by providing a custom RetryConfig
object to the retry_config
parameter.
Retry config examples:
retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
Usage example:
lm_invoker = GoogleLMInvoker(..., retry_config=retry_config)
Thinking
Thinking is a feature that allows the language model to have enhanced reasoning capabilities for complex tasks,
while also providing transparency into its step-by-step thought process before it delivers its final answer.
It can be enabled by setting the thinking
parameter to True
.
Thinking is only available for certain models, starting from Gemini 2.5 series, and is required for
Gemini 2.5 Pro models. Therefore, thinking
defaults to True
for Gemini 2.5 Pro models and False
for other models. Setting thinking
to False
for Gemini 2.5 Pro models will raise a ValueError
.
When enabled, the reasoning is stored in the reasoning
attribute in the output.
Usage example:
lm_invoker = GoogleLMInvoker(..., thinking=True, thinking_budget=1024)
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
reasoning=[Reasoning(reasoning="Let me think about it...")],
)
When streaming is enabled, the thinking token will be streamed with the EventType.DATA
event type.
Streaming output example:
{"type": "data", "value": '{"data_type": "thinking_start", "data_value": ""}', ...}
{"type": "data", "value": '{"data_type": "thinking", "data_value": "Let me think "}', ...}
{"type": "data", "value": '{"data_type": "thinking", "data_value": "about it..."}', ...}
{"type": "data", "value": '{"data_type": "thinking_end", "data_value": ""}', ...}
{"type": "response", "value": "Golden retriever ", ...}
{"type": "response", "value": "is a good dog breed.", ...}
When thinking is enabled, the amount of tokens allocated for the thinking process can be set via the
thinking_budget
parameter. The thinking_budget
:
1. Defaults to -1, in which case the model will control the budget automatically.
2. Must be greater than the model's minimum thinking budget.
For more details, please refer to https://ai.google.dev/gemini-api/docs/thinking
Output types
The output of the GoogleLMInvoker
is of type MultimodalOutput
, which is a type alias that can represent:
1. str
: The text response if no additional output is needed.
2. LMOutput
: A Pydantic model with the following attributes if any additional output is needed:
2.1. response (str): The text response.
2.2. tool_calls (list[ToolCall]): The tool calls, if the tools
parameter is defined and the language
model decides to invoke tools. Defaults to an empty list.
2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the response_schema
parameter is defined. Defaults to None.
2.4. token_usage (TokenUsage | None): The token usage analytics, if the output_analytics
parameter is
set to True
. Defaults to None.
2.5. duration (float | None): The duration of the invocation in seconds, if the output_analytics
parameter is set to True
. Defaults to None.
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
output_analytics
parameter is set to True
. Defaults to None.
2.7. reasoning (list[Reasoning]): The reasoning objects, if the thinking
parameter is set to True
.
Defaults to an empty list.
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
Defaults to an empty list.
Initializes a new instance of the GoogleLMInvoker class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name |
str
|
The name of the model to use. |
required |
api_key |
str | None
|
Required for Google Gen AI authentication. Cannot be used together
with |
None
|
credentials_path |
str | None
|
Required for Google Vertex AI authentication. Path to the service
account credentials JSON file. Cannot be used together with |
None
|
project_id |
str | None
|
The Google Cloud project ID for Vertex AI. Only used when authenticating
with |
None
|
location |
str
|
The location of the Google Cloud project for Vertex AI. Only used when
authenticating with |
'us-central1'
|
model_kwargs |
dict[str, Any] | None
|
Additional keyword arguments for the Google Vertex AI client. |
None
|
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|
tools |
list[Tool] | None
|
Tools provided to the language model to enable tool calling. Defaults to None. |
None
|
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. Defaults to None. |
None
|
output_analytics |
bool
|
Whether to output the invocation analytics. Defaults to False. |
False
|
retry_config |
RetryConfig | None
|
The retry configuration for the language model. Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used. |
None
|
thinking |
bool | None
|
Whether to enable thinking. Only allowed for thinking models. Defaults to True for Gemini 2.5 Pro models and False for other models. |
None
|
thinking_budget |
int
|
The tokens allowed for thinking process. Only allowed for thinking models. Defaults to -1, in which case the model will control the budget automatically. |
DEFAULT_THINKING_BUDGET
|
bind_tools_params |
dict[str, Any] | None
|
Deprecated parameter to add tool calling capability.
If provided, must at least include the |
None
|
with_structured_output_params |
dict[str, Any] | None
|
Deprecated parameter to instruct the
model to produce output with a certain schema. If provided, must at least include the |
None
|
Note
If neither api_key
nor credentials_path
is provided, Google Gen AI will be used by default.
The GOOGLE_API_KEY
environment variable will be used for authentication.
set_response_schema(response_schema)
Sets the response schema for the Google language model.
This method sets the response schema for the Google language model. Any existing response schema will be replaced.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
response_schema |
ResponseSchema | None
|
The response schema to be used. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If |
set_tools(tools)
Sets the tools for the Google language model.
This method sets the tools for the Google language model. Any existing tools will be replaced.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tools |
list[Tool]
|
The list of tools to be used. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If |
GoogleVertexAILMInvoker(model_name, credentials_path, project_id=None, location='us-central1', model_kwargs=None, default_hyperparameters=None, tools=None, response_schema=None, output_analytics=False, retry_config=None, bind_tools_params=None, with_structured_output_params=None)
Bases: GoogleLMInvoker
A language model invoker to interact with Google Vertex AI language models.
This class has been deprecated as Google Vertex AI is now supported through GoogleLMInvoker
.
This class is maintained for backward compatibility and will be removed in version 0.5.0.
Attributes:
Name | Type | Description |
---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the language model. |
client |
Client
|
The Google client instance. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Any]
|
The list of tools provided to the model to enable tool calling. |
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
retry_config |
RetryConfig | None
|
The retry configuration for the language model. |
Initializes a new instance of the GoogleVertexAILMInvoker class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name |
str
|
The name of the multimodal language model to be used. |
required |
credentials_path |
str
|
The path to the Google Cloud service account credentials JSON file. |
required |
project_id |
str | None
|
The Google Cloud project ID. Defaults to None, in which case the project ID will be loaded from the credentials file. |
None
|
location |
str
|
The location of the Google Cloud project. Defaults to "us-central1". |
'us-central1'
|
model_kwargs |
dict[str, Any] | None
|
Additional keyword arguments for the Google Vertex AI client. |
None
|
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|
tools |
list[Tool] | None
|
Tools provided to the language model to enable tool calling. Defaults to None. |
None
|
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. Defaults to None. |
None
|
output_analytics |
bool
|
Whether to output the invocation analytics. Defaults to False. |
False
|
retry_config |
RetryConfig | None
|
The retry configuration for the language model. Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used. |
None
|
bind_tools_params |
dict[str, Any] | None
|
Deprecated parameter to add tool calling capability.
If provided, must at least include the |
None
|
with_structured_output_params |
dict[str, Any] | None
|
Deprecated parameter to instruct the
model to produce output with a certain schema. If provided, must at least include the |
None
|
LangChainLMInvoker(model=None, model_class_path=None, model_name=None, model_kwargs=None, default_hyperparameters=None, tools=None, response_schema=None, output_analytics=False, retry_config=None, llm=None, bind_tools_params=None, with_structured_output_params=None)
Bases: BaseLMInvoker
A language model invoker to interact with LangChain's BaseChatModel.
Attributes:
Name | Type | Description |
---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the language model. |
model |
BaseChatModel
|
The LangChain's BaseChatModel instance. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Any]
|
The list of tools provided to the model to enable tool calling. |
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
retry_config |
RetryConfig | None
|
The retry configuration for the language model. |
Basic usage
The LangChainLMInvoker
can be used as follows:
lm_invoker = LangChainLMInvoker(
model_class_path="langchain_openai.ChatOpenAI",
model_name="gpt-4.1-nano",
)
result = await lm_invoker.invoke("Hi there!")
Initialization
The LangChainLMInvoker
can be initialized by either passing:
- A LangChain's BaseChatModel instance: Usage example:
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4.1-nano", api_key="your_api_key")
lm_invoker = LangChainLMInvoker(model=model)
- A model path in the format of "
. ": Usage example:
lm_invoker = LangChainLMInvoker(
model_class_path="langchain_openai.ChatOpenAI",
model_name="gpt-4.1-nano",
model_kwargs={"api_key": "your_api_key"}
)
For the list of supported providers, please refer to the following table: https://python.langchain.com/docs/integrations/chat/#featured-providers
Input types
- Text.
- Image, with extensions depending on the language model's capabilities.
Non-text inputs must be of valid file extensions and can be passed as an
Attachment
object.
Non-text inputs can only be passed with specific roles, depending on the language model's capabilities.
Usage example:
text = "What animal is in this image?"
image = Attachment.from_path("path/to/local/image.png")
prompt = [(PromptRole.USER, [text, image])]
result = await lm_invoker.invoke(prompt)
Tool calling
Tool calling is a feature that allows the language model to call tools to perform tasks.
Tools can be passed to the via the tools
parameter as a list of LangChain's Tool
objects.
When tools are provided and the model decides to call a tool, the tool calls are stored in the
tool_calls
attribute in the output.
Usage example:
lm_invoker = LangChainLMInvoker(..., tools=[tool_1, tool_2])
Output example:
LMOutput(
response="Let me call the tools...",
tool_calls=[
ToolCall(id="123", name="tool_1", args={"key": "value"}),
ToolCall(id="456", name="tool_2", args={"key": "value"}),
]
)
Structured output
Structured output is a feature that allows the language model to output a structured response.
This feature can be enabled by providing a schema to the response_schema
parameter.
The schema must be either a JSON schema dictionary or a Pydantic BaseModel class.
If JSON schema is used, it must be compatible with Pydantic's JSON schema, especially for complex schemas.
For this reason, it is recommended to create the JSON schema using Pydantic's model_json_schema
method.
Structured output is not compatible with tool calling. The language model also doesn't need to stream
anything when structured output is enabled. Thus, standard invocation will be performed regardless of
whether the event_emitter
parameter is provided or not.
When enabled, the structured output is stored in the structured_output
attribute in the output.
1. If the schema is a JSON schema dictionary, the structured output is a dictionary.
2. If the schema is a Pydantic BaseModel class, the structured output is a Pydantic model.
Example 1: Using a JSON schema dictionary
Usage example:
schema = {
"title": "Animal",
"description": "A description of an animal.",
"properties": {
"color": {"title": "Color", "type": "string"},
"name": {"title": "Name", "type": "string"},
},
"required": ["name", "color"],
"type": "object",
}
lm_invoker = LangChainLMInvoker(..., response_schema=schema)
Output example:
LMOutput(structured_output={"name": "Golden retriever", "color": "Golden"})
Example 2: Using a Pydantic BaseModel class
Usage example:
class Animal(BaseModel):
name: str
color: str
lm_invoker = LangChainLMInvoker(..., response_schema=Animal)
Output example:
LMOutput(structured_output=Animal(name="Golden retriever", color="Golden"))
Analytics tracking
Analytics tracking is a feature that allows the module to output additional information about the invocation.
This feature can be enabled by setting the output_analytics
parameter to True
.
When enabled, the following attributes will be stored in the output:
1. token_usage
: The token usage.
2. duration
: The duration in seconds.
3. finish_details
: The details about how the generation finished.
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
token_usage=TokenUsage(input_tokens=100, output_tokens=50),
duration=0.729,
finish_details={"finish_reason": "stop"},
)
Retry and timeout
The LangChainLMInvoker
supports retry and timeout configuration.
By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
They can be customized by providing a custom RetryConfig
object to the retry_config
parameter.
Retry config examples:
retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
Usage example:
lm_invoker = LangChainLMInvoker(..., retry_config=retry_config)
Output types
The output of the LangChainLMInvoker
is of type MultimodalOutput
, which is a type alias that can represent:
1. str
: The text response if no additional output is needed.
2. LMOutput
: A Pydantic model with the following attributes if any additional output is needed:
2.1. response (str): The text response.
2.2. tool_calls (list[ToolCall]): The tool calls, if the tools
parameter is defined and the language
model decides to invoke tools. Defaults to an empty list.
2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the response_schema
parameter is defined. Defaults to None.
2.4. token_usage (TokenUsage | None): The token usage analytics, if the output_analytics
parameter is
set to True
. Defaults to None.
2.5. duration (float | None): The duration of the invocation in seconds, if the output_analytics
parameter is set to True
. Defaults to None.
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
output_analytics
parameter is set to True
. Defaults to None.
2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
Defaults to an empty list.
Initializes a new instance of the LangChainLMInvoker class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
BaseChatModel | None
|
The LangChain's BaseChatModel instance. If provided, will take
precedence over the |
None
|
model_class_path |
str | None
|
The LangChain's BaseChatModel class path. Must be formatted as
" |
None
|
model_name |
str | None
|
The model name. Only used if |
None
|
model_kwargs |
dict[str, Any] | None
|
The additional keyword arguments. Only used if
|
None
|
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|
tools |
list[Tool] | None
|
Tools provided to the model to enable tool calling. Defaults to None. |
None
|
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. Defaults to None. |
None
|
output_analytics |
bool
|
Whether to output the invocation analytics. Defaults to False. |
False
|
retry_config |
RetryConfig | None
|
The retry configuration for the language model. Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used. |
None
|
llm |
BaseChatModel | None
|
Deprecated parameter to pass the LangChain's BaseChatModel instance.
Equivalent to the |
None
|
bind_tools_params |
dict[str, Any] | None
|
Deprecated parameter to add tool calling capability.
If provided, must at least include the |
None
|
with_structured_output_params |
dict[str, Any] | None
|
Deprecated parameter to instruct the
model to produce output with a certain schema. If provided, must at least include the |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
If |
set_response_schema(response_schema)
Sets the response schema for the LangChain's BaseChatModel.
This method sets the response schema for the LangChain's BaseChatModel. Any existing response schema will be replaced.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
response_schema |
ResponseSchema | None
|
The response schema to be used. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If |
set_tools(tools)
Sets the tools for LangChain's BaseChatModel.
This method sets the tools for LangChain's BaseChatModel. Any existing tools will be replaced.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tools |
list[Tool]
|
The list of tools to be used. |
required |
Raises:
Type | Description |
---|---|
ValueError
|
If |
LiteLLMLMInvoker(model_id, default_hyperparameters=None, tools=None, response_schema=None, output_analytics=False, retry_config=None, reasoning_effort=None)
Bases: OpenAICompatibleLMInvoker
A language model invoker to interact with language models using LiteLLM.
Attributes:
Name | Type | Description |
---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the language model. |
completion |
function
|
The LiteLLM's completion function. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Tool]
|
The list of tools provided to the model to enable tool calling. |
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
Basic usage
The LiteLLMLMInvoker
can be used as follows:
lm_invoker = LiteLLMLMInvoker(model_id="openai/gpt-4.1-nano")
result = await lm_invoker.invoke("Hi there!")
Initialization
The LiteLLMLMInvoker
provides an interface to interact with multiple language model providers.
In order to use this class:
1. The model_id
parameter must be in the format of provider/model_name
. e.g. openai/gpt-4o-mini
.
2. The required credentials must be provided via the environment variables.
Usage example:
os.environ["OPENAI_API_KEY"] = "your_openai_api_key"
lm_invoker = LiteLLMLMInvoker(model_id="openai/gpt-4o-mini")
For the complete list of supported providers and their required credentials, please refer to the LiteLLM documentation: https://docs.litellm.ai/docs/providers/
Input types
- Text.
- Audio, with extensions depending on the language model's capabilities.
- Image, with extensions depending on the language model's capabilities.
Non-text inputs must be of valid file extensions and can be passed as a
Attachment
object.
Non-text inputs can only be passed with the user
role.
Usage example:
text = "What animal is in this image?"
image = Attachment.from_path("path/to/local/image.png")
prompt = [(PromptRole.USER, [text, image])]
result = await lm_invoker.invoke(prompt)
Tool calling
Tool calling is a feature that allows the language model to call tools to perform tasks.
Tools can be passed to the via the tools
parameter as a list of LangChain's Tool
objects.
When tools are provided and the model decides to call a tool, the tool calls are stored in the
tool_calls
attribute in the output.
Usage example:
lm_invoker = LiteLLMLMInvoker(..., tools=[tool_1, tool_2])
Output example:
LMOutput(
response="Let me call the tools...",
tool_calls=[
ToolCall(id="123", name="tool_1", args={"key": "value"}),
ToolCall(id="456", name="tool_2", args={"key": "value"}),
]
)
Structured output
Structured output is a feature that allows the language model to output a structured response.
This feature can be enabled by providing a schema to the response_schema
parameter.
The schema must be either a JSON schema dictionary or a Pydantic BaseModel class.
If JSON schema is used, it must be compatible with Pydantic's JSON schema, especially for complex schemas.
For this reason, it is recommended to create the JSON schema using Pydantic's model_json_schema
method.
The language model also doesn't need to stream anything when structured output is enabled. Thus, standard
invocation will be performed regardless of whether the event_emitter
parameter is provided or not.
When enabled, the structured output is stored in the structured_output
attribute in the output.
1. If the schema is a JSON schema dictionary, the structured output is a dictionary.
2. If the schema is a Pydantic BaseModel class, the structured output is a Pydantic model.
Example 1: Using a JSON schema dictionary
Usage example:
schema = {
"title": "Animal",
"description": "A description of an animal.",
"properties": {
"color": {"title": "Color", "type": "string"},
"name": {"title": "Name", "type": "string"},
},
"required": ["name", "color"],
"type": "object",
}
lm_invoker = LiteLLMLMInvoker(..., response_schema=schema)
Output example:
LMOutput(structured_output={"name": "Golden retriever", "color": "Golden"})
Example 2: Using a Pydantic BaseModel class
Usage example:
class Animal(BaseModel):
name: str
color: str
lm_invoker = LiteLLMLMInvoker(..., response_schema=Animal)
Output example:
LMOutput(structured_output=Animal(name="Golden retriever", color="Golden"))
Analytics tracking
Analytics tracking is a feature that allows the module to output additional information about the invocation.
This feature can be enabled by setting the output_analytics
parameter to True
.
When enabled, the following attributes will be stored in the output:
1. token_usage
: The token usage.
2. duration
: The duration in seconds.
3. finish_details
: The details about how the generation finished.
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
token_usage=TokenUsage(input_tokens=100, output_tokens=50),
duration=0.729,
finish_details={"finish_reason": "stop"},
)
When streaming is enabled, token usage is not supported. Therefore, the token_usage
attribute will be None
regardless of the value of the output_analytics
parameter.
Retry and timeout
The LiteLLMLMInvoker
supports retry and timeout configuration.
By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
They can be customized by providing a custom RetryConfig
object to the retry_config
parameter.
Retry config examples:
retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
Usage example:
lm_invoker = LiteLLMLMInvoker(..., retry_config=retry_config)
Reasoning: Some language models support advanced reasoning capabilities. When using such reasoning-capable models, you can configure how much reasoning the model should perform before generating a final response by setting reasoning-related parameters.
The reasoning effort of reasoning models can be set via the `reasoning_effort` parameter. This parameter
will guide the models on how many reasoning tokens it should generate before creating a response to the prompt.
The reasoning effort is only supported by some language models.
Available options include:
1. "low": Favors speed and economical token usage.
2. "medium": Favors a balance between speed and reasoning accuracy.
3. "high": Favors more complete reasoning at the cost of more tokens generated and slower responses.
This may differ between models. When not set, the reasoning effort will be equivalent to None by default.
When using reasoning models, some providers might output the reasoning summary. These will be stored in the
`reasoning` attribute in the output.
Output example:
```python
LMOutput(
response="Golden retriever is a good dog breed.",
reasoning=[Reasoning(id="", reasoning="Let me think about it...")],
)
```
When streaming is enabled along with reasoning and the provider supports reasoning output, the reasoning token
will be streamed with the `EventType.DATA` event type.
Streaming output example:
```python
{"type": "data", "value": '{"data_type": "thinking_start", "data_value": ""}', ...}
{"type": "data", "value": '{"data_type": "thinking", "data_value": "Let me think "}', ...}
{"type": "data", "value": '{"data_type": "thinking", "data_value": "about it..."}', ...}
{"type": "data", "value": '{"data_type": "thinking_end", "data_value": ""}', ...}
{"type": "response", "value": "Golden retriever ", ...}
{"type": "response", "value": "is a good dog breed.", ...}
Setting reasoning-related parameters for non-reasoning models will raise an error.
Output types:
The output of the LiteLLMLMInvoker
is of type MultimodalOutput
, which is a type alias that can represent:
1. str
: The text response if no additional output is needed.
2. LMOutput
: A Pydantic model with the following attributes if any additional output is needed:
2.1. response (str): The text response.
2.2. tool_calls (list[ToolCall]): The tool calls, if the tools
parameter is defined and the language
model decides to invoke tools. Defaults to an empty list.
2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the response_schema
parameter is defined. Defaults to None.
2.4. token_usage (TokenUsage | None): The token usage analytics, if the output_analytics
parameter is
set to True
. Defaults to None.
2.5. duration (float | None): The duration of the invocation in seconds, if the output_analytics
parameter is set to True
. Defaults to None.
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
output_analytics
parameter is set to True
. Defaults to None.
2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
Defaults to an empty list.
Initializes a new instance of the LiteLLMLMInvoker class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_id |
str
|
The ID of the model to use. Must be in the format of |
required |
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|
tools |
list[Tool] | None
|
Tools provided to the model to enable tool calling. Defaults to None. |
None
|
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. Defaults to None. |
None
|
output_analytics |
bool
|
Whether to output the invocation analytics. Defaults to False. |
False
|
retry_config |
RetryConfig | None
|
The retry configuration for the language model. Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used. |
None
|
reasoning_effort |
ReasoningEffort | None
|
The reasoning effort for reasoning models. Defaults to None. |
None
|
OpenAICompatibleLMInvoker(model_name, base_url, api_key=None, model_kwargs=None, default_hyperparameters=None, tools=None, response_schema=None, output_analytics=False, retry_config=None, reasoning_effort=None, bind_tools_params=None, with_structured_output_params=None)
Bases: BaseLMInvoker
A language model invoker to interact with endpoints compatible with OpenAI's chat completion API contract.
Attributes:
Name | Type | Description |
---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the language model. |
client |
AsyncOpenAI
|
The OpenAI client instance. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Any]
|
The list of tools provided to the model to enable tool calling. |
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
retry_config |
RetryConfig | None
|
The retry configuration for the language model. |
When to use
The OpenAICompatibleLMInvoker
is designed to interact with endpoints that are compatible with OpenAI's chat
completion API contract. This includes but are not limited to:
1. DeepInfra (https://deepinfra.com/)
2. DeepSeek (https://deepseek.com/)
3. Groq (https://groq.com/)
4. OpenRouter (https://openrouter.ai/)
5. Text Generation Inference (https://github.com/huggingface/text-generation-inference)
6. Together.ai (https://together.ai/)
7. vLLM (https://vllm.ai/)
When using this invoker, please note that the supported features and capabilities may vary between different
endpoints and language models. Using features that are not supported by the endpoint will result in an error.
Basic usage
The OpenAICompatibleLMInvoker
can be used as follows:
lm_invoker = OpenAICompatibleLMInvoker(
model_name="llama3-8b-8192",
base_url="https://api.groq.com/openai/v1",
api_key="<your-api-key>"
)
result = await lm_invoker.invoke("Hi there!")
Input types
- Text.
- Audio, with extensions depending on the language model's capabilities.
- Image, with extensions depending on the language model's capabilities.
Non-text inputs must be of valid file extensions and can be passed as an
Attachment
object.
Non-text inputs can only be passed with the user
role.
Usage example:
text = "What animal is in this image?"
image = Attachment.from_path("path/to/local/image.png")
prompt = [(PromptRole.USER, [text, image])]
result = await lm_invoker.invoke(prompt)
Tool calling
Tool calling is a feature that allows the language model to call tools to perform tasks.
Tools can be passed to the via the tools
parameter as a list of LangChain's Tool
objects.
When tools are provided and the model decides to call a tool, the tool calls are stored in the
tool_calls
attribute in the output.
Usage example:
lm_invoker = OpenAICompatibleLMInvoker(..., tools=[tool_1, tool_2])
Output example:
LMOutput(
response="Let me call the tools...",
tool_calls=[
ToolCall(id="123", name="tool_1", args={"key": "value"}),
ToolCall(id="456", name="tool_2", args={"key": "value"}),
]
)
Structured output
Structured output is a feature that allows the language model to output a structured response.
This feature can be enabled by providing a schema to the response_schema
parameter.
The schema must be either a JSON schema dictionary or a Pydantic BaseModel class.
If JSON schema is used, it must be compatible with Pydantic's JSON schema, especially for complex schemas.
For this reason, it is recommended to create the JSON schema using Pydantic's model_json_schema
method.
The language model also doesn't need to stream anything when structured output is enabled. Thus, standard
invocation will be performed regardless of whether the event_emitter
parameter is provided or not.
When enabled, the structured output is stored in the structured_output
attribute in the output.
1. If the schema is a JSON schema dictionary, the structured output is a dictionary.
2. If the schema is a Pydantic BaseModel class, the structured output is a Pydantic model.
Example 1: Using a JSON schema dictionary
Usage example:
schema = {
"title": "Animal",
"description": "A description of an animal.",
"properties": {
"color": {"title": "Color", "type": "string"},
"name": {"title": "Name", "type": "string"},
},
"required": ["name", "color"],
"type": "object",
}
lm_invoker = OpenAICompatibleLMInvoker(..., response_schema=schema)
Output example:
LMOutput(structured_output={"name": "Golden retriever", "color": "Golden"})
Example 2: Using a Pydantic BaseModel class
Usage example:
class Animal(BaseModel):
name: str
color: str
lm_invoker = OpenAICompatibleLMInvoker(..., response_schema=Animal)
Output example:
LMOutput(structured_output=Animal(name="Golden retriever", color="Golden"))
Analytics tracking
Analytics tracking is a feature that allows the module to output additional information about the invocation.
This feature can be enabled by setting the output_analytics
parameter to True
.
When enabled, the following attributes will be stored in the output:
1. token_usage
: The token usage.
2. duration
: The duration in seconds.
3. finish_details
: The details about how the generation finished.
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
token_usage=TokenUsage(input_tokens=100, output_tokens=50),
duration=0.729,
finish_details={"finish_reason": "stop"},
)
When streaming is enabled, token usage is not supported. Therefore, the token_usage
attribute will be None
regardless of the value of the output_analytics
parameter.
Retry and timeout
The OpenAICompatibleLMInvoker
supports retry and timeout configuration.
By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
They can be customized by providing a custom RetryConfig
object to the retry_config
parameter.
Retry config examples:
retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
Usage example:
lm_invoker = OpenAICompatibleLMInvoker(..., retry_config=retry_config)
Reasoning
Some language models support advanced reasoning capabilities. When using such reasoning-capable models, you can configure how much reasoning the model should perform before generating a final response by setting reasoning-related parameters.
The reasoning effort of reasoning models can be set via the reasoning_effort
parameter. This parameter
will guide the models on how many reasoning tokens it should generate before creating a response to the prompt.
The reasoning effort is only supported by some language models.
Available options include:
1. "low": Favors speed and economical token usage.
2. "medium": Favors a balance between speed and reasoning accuracy.
3. "high": Favors more complete reasoning at the cost of more tokens generated and slower responses.
This may differ between models. When not set, the reasoning effort will be equivalent to None by default.
When using reasoning models, some providers might output the reasoning summary. These will be stored in the
reasoning
attribute in the output.
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
reasoning=[Reasoning(id="", reasoning="Let me think about it...")],
)
When streaming is enabled along with reasoning and the provider supports reasoning output, the reasoning token
will be streamed with the EventType.DATA
event type.
Streaming output example: ```python {"type": "data", "value": '{"data_type": "thinking_start", "data_value": ""}', ...} {"type": "data", "value": '{"data_type": "thinking", "data_value": "Let me think "}', ...} {"type": "data", "value": '{"data_type": "thinking", "data_value": "about it..."}', ...} {"type": "data", "value": '{"data_type": "thinking_end", "data_value": ""}', ...} {"type": "response", "value": "Golden retriever ", ...} {"type": "response", "value": "is a good dog breed.", ...}
Setting reasoning-related parameters for non-reasoning models will raise an error.
Output types
The output of the OpenAICompatibleLMInvoker
is of type MultimodalOutput
, which is a type alias that can
represent:
1. str
: The text response if no additional output is needed.
2. LMOutput
: A Pydantic model with the following attributes if any additional output is needed:
2.1. response (str): The text response.
2.2. tool_calls (list[ToolCall]): The tool calls, if the tools
parameter is defined and the language
model decides to invoke tools. Defaults to an empty list.
2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the response_schema
parameter is defined. Defaults to None.
2.4. token_usage (TokenUsage | None): The token usage analytics, if the output_analytics
parameter is
set to True
. Defaults to None.
2.5. duration (float | None): The duration of the invocation in seconds, if the output_analytics
parameter is set to True
. Defaults to None.
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
output_analytics
parameter is set to True
. Defaults to None.
2.7. reasoning (list[Reasoning]): The reasoning objects. Currently not supported. Defaults to an empty list.
2.8. citations (list[Chunk]): The citations. Currently not supported. Defaults to an empty list.
2.9. code_exec_results (list[CodeExecResult]): The code execution results. Currently not supported.
Defaults to an empty list.
Initializes a new instance of the OpenAICompatibleLMInvoker class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name |
str
|
The name of the language model hosted on the OpenAI compatible endpoint. |
required |
base_url |
str
|
The base URL for the OpenAI compatible endpoint. |
required |
api_key |
str | None
|
The API key for authenticating with the OpenAI compatible endpoint.
Defaults to None, in which case the |
None
|
model_kwargs |
dict[str, Any] | None
|
Additional model parameters. Defaults to None. |
None
|
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|
tools |
list[Tool] | None
|
Tools provided to the language model to enable tool calling. Defaults to None. |
None
|
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. Defaults to None. |
None
|
output_analytics |
bool
|
Whether to output the invocation analytics. Defaults to False. |
False
|
retry_config |
RetryConfig | None
|
The retry configuration for the language model. Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used. |
None
|
reasoning_effort |
str | None
|
The reasoning effort for the language model. Defaults to None. |
None
|
bind_tools_params |
dict[str, Any] | None
|
Deprecated parameter to add tool calling capability.
If provided, must at least include the |
None
|
with_structured_output_params |
dict[str, Any] | None
|
Deprecated parameter to instruct the
model to produce output with a certain schema. If provided, must at least include the |
None
|
set_response_schema(response_schema)
Sets the response schema for the language model hosted on the OpenAI compatible endpoint.
This method sets the response schema for the language model hosted on the OpenAI compatible endpoint. Any existing response schema will be replaced.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
response_schema |
ResponseSchema | None
|
The response schema to be used. |
required |
OpenAILMInvoker(model_name, api_key=None, model_kwargs=None, default_hyperparameters=None, tools=None, response_schema=None, output_analytics=False, retry_config=None, reasoning_effort=None, reasoning_summary=None, code_interpreter=False, web_search=False, bind_tools_params=None, with_structured_output_params=None)
Bases: BaseLMInvoker
A language model invoker to interact with OpenAI language models.
Attributes:
Name | Type | Description |
---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the language model. |
client |
AsyncOpenAI
|
The OpenAI client instance. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Any]
|
The list of tools provided to the model to enable tool calling. |
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
retry_config |
RetryConfig
|
The retry configuration for the language model. |
reasoning_effort |
ReasoningEffort | None
|
The reasoning effort for reasoning models. Not allowed for non-reasoning models. If None, the model will perform medium reasoning effort. |
reasoning_summary |
ReasoningSummary | None
|
The reasoning summary level for reasoning models. Not allowed for non-reasoning models. If None, no summary will be generated. |
code_interpreter |
bool
|
Whether to enable the code interpreter. |
web_search |
bool
|
Whether to enable the web search. |
Basic usage
The OpenAILMInvoker
can be used as follows:
lm_invoker = OpenAILMInvoker(model_name="gpt-4.1-nano")
result = await lm_invoker.invoke("Hi there!")
Input types
- Text.
- Document: ".pdf".
- Image: ".jpg", ".jpeg", ".png", ".gif", and ".webp".
Non-text inputs must be of valid file extensions and can be passed as an
Attachment
object.
Non-text inputs can only be passed with the user
role.
Usage example:
text = "What animal is in this image?"
image = Attachment.from_path("path/to/local/image.png")
prompt = [(PromptRole.USER, [text, image])]
result = await lm_invoker.invoke(prompt)
Tool calling
Tool calling is a feature that allows the language model to call tools to perform tasks.
Tools can be passed to the via the tools
parameter as a list of LangChain's Tool
objects.
When tools are provided and the model decides to call a tool, the tool calls are stored in the
tool_calls
attribute in the output.
Usage example:
lm_invoker = OpenAILMInvoker(..., tools=[tool_1, tool_2])
Output example:
LMOutput(
response="Let me call the tools...",
tool_calls=[
ToolCall(id="123", name="tool_1", args={"key": "value"}),
ToolCall(id="456", name="tool_2", args={"key": "value"}),
]
)
Structured output
Structured output is a feature that allows the language model to output a structured response.
This feature can be enabled by providing a schema to the response_schema
parameter.
The schema must be either a JSON schema dictionary or a Pydantic BaseModel class.
If JSON schema is used, it must be compatible with Pydantic's JSON schema, especially for complex schemas.
For this reason, it is recommended to create the JSON schema using Pydantic's model_json_schema
method.
The language model also doesn't need to stream anything when structured output is enabled. Thus, standard
invocation will be performed regardless of whether the event_emitter
parameter is provided or not.
When enabled, the structured output is stored in the structured_output
attribute in the output.
1. If the schema is a JSON schema dictionary, the structured output is a dictionary.
2. If the schema is a Pydantic BaseModel class, the structured output is a Pydantic model.
Example 1: Using a JSON schema dictionary
Usage example:
schema = {
"title": "Animal",
"description": "A description of an animal.",
"properties": {
"color": {"title": "Color", "type": "string"},
"name": {"title": "Name", "type": "string"},
},
"required": ["name", "color"],
"type": "object",
}
lm_invoker = OpenAILMInvoker(..., response_schema=schema)
Output example:
LMOutput(structured_output={"name": "Golden retriever", "color": "Golden"})
Example 2: Using a Pydantic BaseModel class
Usage example:
class Animal(BaseModel):
name: str
color: str
lm_invoker = OpenAILMInvoker(..., response_schema=Animal)
Output example:
LMOutput(structured_output=Animal(name="Golden retriever", color="Golden"))
Analytics tracking
Analytics tracking is a feature that allows the module to output additional information about the invocation.
This feature can be enabled by setting the output_analytics
parameter to True
.
When enabled, the following attributes will be stored in the output:
1. token_usage
: The token usage.
2. duration
: The duration in seconds.
3. finish_details
: The details about how the generation finished.
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
token_usage=TokenUsage(input_tokens=100, output_tokens=50),
duration=0.729,
finish_details={"status": "completed", "incomplete_details": {"reason": None}},
)
Retry and timeout
The OpenAILMInvoker
supports retry and timeout configuration.
By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
They can be customized by providing a custom RetryConfig
object to the retry_config
parameter.
Retry config examples:
retry_config = RetryConfig(max_retries=0, timeout=0.0) # No retry, no timeout
retry_config = RetryConfig(max_retries=0, timeout=10.0) # No retry, 10.0 seconds timeout
retry_config = RetryConfig(max_retries=5, timeout=0.0) # 5 max retries, no timeout
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
Usage example:
lm_invoker = OpenAILMInvoker(..., retry_config=retry_config)
Reasoning
OpenAI's o-series models are classified as reasoning models. Reasoning models think before they answer, producing a long internal chain of thought before responding to the user. Reasoning models excel in complex problem solving, coding, scientific reasoning, and multi-step planning for agentic workflows.
The reasoning effort of reasoning models can be set via the reasoning_effort
parameter. This parameter
will guide the models on how many reasoning tokens it should generate before creating a response to the prompt.
Available options include:
1. "low": Favors speed and economical token usage.
2. "medium": Favors a balance between speed and reasoning accuracy.
3. "high": Favors more complete reasoning at the cost of more tokens generated and slower responses.
When not set, the reasoning effort will be equivalent to medium
by default.
OpenAI doesn't expose the raw reasoning tokens. However, the summary of the reasoning tokens can still be
generated. The summary level can be set via the reasoning_summary
parameter. Available options include:
1. "auto": The model decides the summary level automatically.
2. "detailed": The model will generate a detailed summary of the reasoning tokens.
Reasoning summary is not compatible with tool calling.
When enabled, the reasoning summary will be stored in the reasoning
attribute in the output.
Output example:
LMOutput(
response="Golden retriever is a good dog breed.",
reasoning=[Reasoning(id="x", reasoning="Let me think about it...")],
)
When streaming is enabled along with reasoning summary, the reasoning summary token will be streamed with the
EventType.DATA
event type.
Streaming output example:
{"type": "data", "value": '{"data_type": "thinking_start", "data_value": ""}', ...}
{"type": "data", "value": '{"data_type": "thinking", "data_value": "Let me think "}', ...}
{"type": "data", "value": '{"data_type": "thinking", "data_value": "about it..."}', ...}
{"type": "data", "value": '{"data_type": "thinking_end", "data_value": ""}', ...}
{"type": "response", "value": "Golden retriever ", ...}
{"type": "response", "value": "is a good dog breed.", ...}
Setting reasoning-related parameters for non-reasoning models will raise an error.
Code interpreter
The code interpreter is a feature that allows the language model to write and run Python code in a
sandboxed environment to solve complex problems in domains like data analysis, coding, and math.
This feature can be enabled by setting the code_interpreter
parameter to True
.
Usage example:
lm_invoker = OpenAILMInvoker(..., code_interpreter=True)
When code interpreter is enabled, it is highly recommended to instruct the model to use the "python tool" in the system message, as "python tool" is the term recognized by the model to refer to the code interpreter.
Prompt example:
prompt = [
("system", ["You are a data analyst. Use the python tool to generate a file."]),
("user", ["Show an histogram of the following data: [1, 2, 1, 4, 1, 2, 4, 2, 3, 1]"]),
]
When code interpreter is enabled, the code execution results are stored in the code_exec_results
attribute in the output.
Output example:
LMOutput(
response="The histogram is attached.",
code_exec_results=[
CodeExecResult(
id="123",
code="import matplotlib.pyplot as plt...",
output=[Attachment(data=b"...", mime_type="image/png")],
),
],
)
When streaming is enabled, the executed code will be streamed with the EventType.DATA
event type.
Streaming output example:
{"type": "data", "value": '{"data_type": "code_start", "data_value": ""}', ...}
{"type": "data", "value": '{"data_type": "code", "data_value": "import matplotlib"}', ...}
{"type": "data", "value": '{"data_type": "code", "data_value": ".pyplot as plt..."}', ...}
{"type": "data", "value": '{"data_type": "code_end", "data_value": ""}', ...}
{"type": "response", "value": "The histogram ", ...}
{"type": "response", "value": "is attached.", ...}
Web search
The web search is a feature that allows the language model to search the web for relevant information.
This feature can be enabled by setting the web_search
parameter to True
.
Usage example:
lm_invoker = OpenAILMInvoker(..., web_search=True)
When web search is enabled, the language model will search the web for relevant information and may cite the
relevant sources. The citations will be stored as Chunk
objects in the citations
attribute in the output.
The content of the Chunk
object is the type of the citation, e.g. "url_citation".
Output example:
LMOutput(
response="The winner of the match is team A ([Example title](https://www.example.com)).",
citations=[
Chunk(
id="123",
content="url_citation",
metadata={
"start_index": 164,
"end_index": 275,
"title": "Example title",
"url": "https://www.example.com",
"type": "url_citation",
},
),
],
)
When streaming is enabled, the web search activities will be streamed with the EventType.DATA
event type.
Streaming output example:
{"type": "data", "value": '{"data_type": "activity", "data_value": "{\"query\": \"search query\"}", ...}', ...}
{"type": "response", "value": "The winner of the match ", ...}
{"type": "response", "value": "is team A ([Example title](https://www.example.com)).", ...}
Output types
The output of the OpenAILMInvoker
is of type MultimodalOutput
, which is a type alias that can represent:
1. str
: The text response if no additional output is needed.
2. LMOutput
: A Pydantic model with the following attributes if any additional output is needed:
2.1. response (str): The text response.
2.2. tool_calls (list[ToolCall]): The tool calls, if the tools
parameter is defined and the language
model decides to invoke tools. Defaults to an empty list.
2.3. structured_output (dict[str, Any] | BaseModel | None): The structured output, if the response_schema
parameter is defined. Defaults to None.
2.4. token_usage (TokenUsage | None): The token usage analytics, if the output_analytics
parameter is
set to True
. Defaults to None.
2.5. duration (float | None): The duration of the invocation in seconds, if the output_analytics
parameter is set to True
. Defaults to None.
2.6. finish_details (dict[str, Any] | None): The details about how the generation finished, if the
output_analytics
parameter is set to True
. Defaults to None.
2.7. reasoning (list[Reasoning]): The reasoning objects, if the reasoning_summary
parameter is provided
for reasoning models. Defaults to an empty list.
2.8. citations (list[Chunk]): The citations, if the web_search is enabled and the language model decides
to cite the relevant sources. Defaults to an empty list.
2.9. code_exec_results (list[CodeExecResult]): The code execution results, if the code interpreter is
enabled and the language model decides to execute any codes. Defaults to an empty list.
Initializes a new instance of the OpenAILMInvoker class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_name |
str
|
The name of the OpenAI model. |
required |
api_key |
str | None
|
The API key for authenticating with OpenAI. Defaults to None, in which
case the |
None
|
model_kwargs |
dict[str, Any] | None
|
Additional model parameters. Defaults to None. |
None
|
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|
tools |
list[Tool] | None
|
Tools provided to the language model to enable tool calling. Defaults to None. |
None
|
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. Defaults to None. |
None
|
output_analytics |
bool
|
Whether to output the invocation analytics. Defaults to False. |
False
|
retry_config |
RetryConfig | None
|
The retry configuration for the language model. Defaults to None, in which case a default config with no retry and 30.0 seconds timeout is used. |
None
|
reasoning_effort |
ReasoningEffort | None
|
The reasoning effort for reasoning models. Not allowed for non-reasoning models. If None, the model will perform medium reasoning effort. Defaults to None. |
None
|
reasoning_summary |
ReasoningSummary | None
|
The reasoning summary level for reasoning models. Not allowed for non-reasoning models. If None, no summary will be generated. Defaults to None. |
None
|
code_interpreter |
bool
|
Whether to enable the code interpreter. Defaults to False. |
False
|
web_search |
bool
|
Whether to enable the web search. Defaults to False. |
False
|
bind_tools_params |
dict[str, Any] | None
|
Deprecated parameter to add tool calling capability.
If provided, must at least include the |
None
|
with_structured_output_params |
dict[str, Any] | None
|
Deprecated parameter to instruct the
model to produce output with a certain schema. If provided, must at least include the |
None
|
Raises:
Type | Description |
---|---|
ValueError
|
|
set_response_schema(response_schema)
Sets the response schema for the OpenAI language model.
This method sets the response schema for the OpenAI language model. Any existing response schema will be replaced.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
response_schema |
ResponseSchema | None
|
The response schema to be used. |
required |
TGILMInvoker(url, username='', password='', api_key='', default_hyperparameters=None)
Bases: OpenAICompatibleLMInvoker
A language model invoker to interact with language models hosted in Text Generation Inference (TGI).
This class has been deprecated as Text Generation Inference is now supported through OpenAICompatibleLMInvoker
.
This class is maintained for backward compatibility and will be removed in version 0.5.0.
Attributes:
Name | Type | Description |
---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the language model. |
client |
AsyncOpenAI
|
The OpenAI client instance. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Any]
|
The list of tools provided to the model to enable tool calling. |
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
retry_config |
RetryConfig
|
The retry configuration for the language model. |
Initializes a new instance of the TGILMInvoker class.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str
|
The URL of the TGI service. |
required |
username |
str
|
The username for Basic Authentication. Defaults to an empty string. |
''
|
password |
str
|
The password for Basic Authentication. Defaults to an empty string. |
''
|
api_key |
str
|
The API key for authenticating with the TGI service. Defaults to an empty string. |
''
|
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|