Openai chat completions lm invoker
Defines a module to interact with OpenAI language models using the Chat Completions API.
References
[1] https://platform.openai.com/docs/api-reference/chat
OpenAIChatCompletionsLMInvoker(model_name, api_key=None, base_url=OPENAI_DEFAULT_URL, model_kwargs=None, default_hyperparameters=None, tools=None, response_schema=None, output_analytics=False, retry_config=None, reasoning_effort=None, simplify_events=False)
Bases: BaseLMInvoker
A language model invoker to interact with OpenAI language models using the Chat Completions API.
This class provides support for OpenAI's Chat Completions API schema. Use this class only when you have
a specific reason to use the Chat Completions API over the Responses API, as OpenAI recommends using
the Responses API whenever possible. The Responses API schema is supported through the OpenAILMInvoker class.
Attributes:
| Name | Type | Description |
|---|---|---|
model_id |
str
|
The model ID of the language model. |
model_provider |
str
|
The provider of the language model. |
model_name |
str
|
The name of the language model. |
client_kwargs |
dict[str, Any]
|
The keyword arguments for the OpenAI client. |
default_hyperparameters |
dict[str, Any]
|
Default hyperparameters for invoking the model. |
tools |
list[Tool]
|
The list of tools provided to the model to enable tool calling. |
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. |
output_analytics |
bool
|
Whether to output the invocation analytics. |
retry_config |
RetryConfig | None
|
The retry configuration for the language model. |
Basic usage
The OpenAIChatCompletionsLMInvoker can be used as follows:
lm_invoker = OpenAIChatCompletionsLMInvoker(model_name="gpt-5-nano")
result = await lm_invoker.invoke("Hi there!")
OpenAI compatible endpoints
The OpenAIChatCompletionsLMInvoker can also be used to interact with endpoints that are compatible with
OpenAI's Chat Completions API schema. This includes but are not limited to:
1. DeepInfra (https://deepinfra.com/)
2. DeepSeek (https://deepseek.com/)
3. Groq (https://groq.com/)
4. OpenRouter (https://openrouter.ai/)
5. Text Generation Inference (https://github.com/huggingface/text-generation-inference)
6. Together.ai (https://together.ai/)
7. vLLM (https://vllm.ai/)
Please note that the supported features and capabilities may vary between different endpoints and
language models. Using features that are not supported by the endpoint will result in an error.
This customization can be done by setting the base_url parameter to the base URL of the endpoint:
lm_invoker = OpenAIChatCompletionsLMInvoker(
model_name="llama3-8b-8192",
api_key="<your-api-key>",
base_url="https://api.groq.com/openai/v1",
)
result = await lm_invoker.invoke("Hi there!")
Input types
The OpenAIChatCompletionsLMInvoker supports the following input types: text, audio, document, and image.
Non-text inputs can be passed as an Attachment object with the user role.
Usage example:
text = "What animal is in this image?"
image = Attachment.from_path("path/to/local/image.png")
result = await lm_invoker.invoke([text, image])
Text output
The OpenAIChatCompletionsLMInvoker generates text outputs by default.
Text outputs are stored in the outputs attribute of the LMOutput object and can be accessed
via the texts (all text outputs) or text (first text output) properties.
Output example:
LMOutput(outputs=[LMOutputItem(type="text", output="Hello, there!")])
Structured output
The OpenAIChatCompletionsLMInvoker can be configured to generate structured outputs.
This feature can be enabled by providing a schema to the response_schema parameter.
Structured outputs are stored in the outputs attribute of the LMOutput object and can be accessed
via the structureds (all structured outputs) or structured (first structured output) properties.
The schema must either be one of the following:
1. A Pydantic BaseModel class
The structured output will be a Pydantic model.
2. A JSON schema dictionary
JSON dictionary schema must be compatible with Pydantic's JSON schema, especially for complex schemas.
Thus, it is recommended to create the JSON schema using Pydantic's model_json_schema method.
The structured output will be a dictionary.
Usage example:
class Animal(BaseModel):
name: str
color: str
json_schema = Animal.model_json_schema()
lm_invoker = OpenAIChatCompletionsLMInvoker(..., response_schema=Animal) # Using Pydantic BaseModel class
lm_invoker = OpenAIChatCompletionsLMInvoker(..., response_schema=json_schema) # Using JSON schema dictionary
Output example:
# Using Pydantic BaseModel class outputs a Pydantic model
LMOutput(outputs=[LMOutputItem(type="structured", output=Animal(name="dog", color="white"))])
# Using JSON schema dictionary outputs a dictionary
LMOutput(outputs=[LMOutputItem(type="structured", output={"name": "dog", "color": "white"})])
When structured output is enabled, streaming is disabled.
Tool calling
The OpenAIChatCompletionsLMInvoker can be configured to call tools to perform certain tasks.
This feature can be enabled by providing a list of Tool objects to the tools parameter.
Tool calls outputs are stored in the outputs attribute of the LMOutput object and
can be accessed via the tool_calls property.
Usage example:
lm_invoker = OpenAIChatCompletionsLMInvoker(..., tools=[tool_1, tool_2])
Output example:
LMOutput(
outputs=[
LMOutputItem(type="text", output="I'm using tools..."),
LMOutputItem(type="tool_call", output=ToolCall(id="123", name="tool_1", args={"key": "value"})),
LMOutputItem(type="tool_call", output=ToolCall(id="456", name="tool_2", args={"key": "value"})),
]
)
Reasoning
The OpenAILMInvoker performs step-by-step reasoning before generating a response when reasoning
models are used, such as GPT-5 models and o-series models.
The reasoning effort can be set via the reasoning_effort parameter, which guides the models on the amount
of reasoning tokens to generate. Available options include minimal, low, medium, and high.
Some models may also output the reasoning tokens. In this case, the reasoning tokens are stored in
the outputs attribute of the LMOutput object and can be accessed via the thinkings property.
Output example:
LMOutput(
outputs=[
LMOutputItem(type="thinking", output=Reasoning(reasoning="I'm thinking...", ...)),
LMOutputItem(type="text", output="Golden retriever is a good dog breed."),
]
)
Streaming output example:
python
{"type": "thinking_start", "value": "", ...}
{"type": "thinking", "value": "I'm ", ...}
{"type": "thinking", "value": "thinking...", ...}
{"type": "thinking_end", "value": "", ...}
{"type": "response", "value": "Golden retriever ", ...}
{"type": "response", "value": "is a good dog breed.", ...}
Note: By default, the thinking token will be streamed with the legacy EventType.DATA event type.
To use the new simplified streamed event format, set the simplify_events parameter to True during
LM invoker initialization. The legacy event format support will be removed in v0.6.
Setting reasoning-related parameters for non-reasoning models will raise an error.
Analytics tracking
The OpenAIChatCompletionsLMInvoker can be configured to output additional information about the invocation.
This feature can be enabled by setting the output_analytics parameter to True.
When enabled, the following attributes will be stored in the output:
1. token_usage: The token usage.
2. duration: The duration in seconds.
3. finish_details: The details about how the generation finished.
Output example:
LMOutput(
outputs=[...],
token_usage=TokenUsage(input_tokens=100, output_tokens=50),
duration=0.729,
finish_details={"stop_reason": "end_turn"},
)
When streaming is enabled, token usage is not supported.
Retry and timeout
The OpenAIChatCompletionsLMInvoker supports retry and timeout configuration.
By default, the max retries is set to 0 and the timeout is set to 30.0 seconds.
They can be customized by providing a custom RetryConfig object to the retry_config parameter.
Retry config examples:
retry_config = RetryConfig(max_retries=0, timeout=None) # No retry, no timeout
retry_config = RetryConfig(max_retries=5, timeout=10.0) # 5 max retries, 10.0 seconds timeout
Usage example:
lm_invoker = OpenAIChatCompletionsLMInvoker(..., retry_config=retry_config)
Initializes a new instance of the OpenAIChatCompletionsLMInvoker class.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model_name |
str
|
The name of the OpenAI model. |
required |
api_key |
str | None
|
The API key for authenticating with OpenAI. Defaults to None, in which
case the |
None
|
base_url |
str
|
The base URL of a custom endpoint that is compatible with OpenAI's Chat Completions API schema. Defaults to OpenAI's default URL. |
OPENAI_DEFAULT_URL
|
model_kwargs |
dict[str, Any] | None
|
Additional model parameters. Defaults to None. |
None
|
default_hyperparameters |
dict[str, Any] | None
|
Default hyperparameters for invoking the model. Defaults to None. |
None
|
tools |
list[Tool | Tool] | None
|
Tools provided to the model to enable tool calling. Defaults to None. |
None
|
response_schema |
ResponseSchema | None
|
The schema of the response. If provided, the model will output a structured response as defined by the schema. Supports both Pydantic BaseModel and JSON schema dictionary. Defaults to None. |
None
|
output_analytics |
bool
|
Whether to output the invocation analytics. Defaults to False. |
False
|
retry_config |
RetryConfig | None
|
The retry configuration for the language model. Defaults to None, in which case a default config with no retry and 30.0 seconds timeout will be used. |
None
|
reasoning_effort |
str | None
|
The reasoning effort for the language model. Defaults to None. |
None
|
simplify_events |
bool
|
Temporary parameter to control the streamed events format. When True, uses the simplified events format. When False, uses the legacy events format for backward compatibility. Will be removed in v0.6. Defaults to False. |
False
|
set_response_schema(response_schema)
Sets the response schema for the OpenAI language model.
This method sets the response schema for the OpenAI language model. Any existing response schema will be replaced.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
response_schema |
ResponseSchema | None
|
The response schema to be used. |
required |