Skip to content

Builder

Modules concerning the builder utilities of GLLM Inference modules.

Modules

_build_invoker

Defines an internal utility function to build a model invoker.

Authors

Henry Wicaksono (henry.wicaksono@gdplabs.id)

References

NONE

Key

Defines valid keys in the config.

build_em_invoker

Defines a convenience function to build an embedding model invoker.

Authors

Henry Wicaksono (henry.wicaksono@gdplabs.id)

References

NONE

build_em_invoker(model_id, credentials=None, config=None)

Build an embedding model invoker based on the provided configurations.

Parameters:

Name Type Description Default
model_id str | ModelId

The model id, can either be a ModelId instance or a string in a format defined in the following page: https://gdplabs.gitbook.io/sdk/resources/supported-models#embedding-models-ems

required
credentials str | dict[str, Any] | None

The credentials for the language model. Can either be: 1. An API key. 2. A path to a credentials JSON file, currently only supported for Google Vertex AI. 3. A dictionary of credentials, currently only supported for LangChain. Defaults to None, in which case the credentials will be loaded from the appropriate environment variables.

None
config dict[str, Any] | None

Additional configuration for the embedding model. Defaults to None.

None

Returns:

Name Type Description
BaseEMInvoker BaseEMInvoker

The initialized embedding model invoker.

Raises:

Type Description
ValueError

If the provider is invalid.

Usage examples

Using Bedrock

em_invoker = build_em_invoker(
    model_id="bedrock/cohere.embed-english-v3",
    credentials={
        "access_key_id": "Abc123...",
        "secret_access_key": "Xyz123...",
    },
)

The credentials can also be provided through the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables.

Using Google Gen AI (via API key)

em_invoker = build_em_invoker(
    model_id="google/text-embedding-004",
    credentials="AIzaSyD..."
)

The credentials can also be provided through the GOOGLE_API_KEY environment variable.

Using Google Vertex AI (via service account)

em_invoker = build_em_invoker(
    model_id="google/text-embedding-004",
    credentials="/path/to/google-credentials.json"
)

Providing credentials through environment variable is not supported for Google Vertex AI.

Using Jina

em_invoker = build_em_invoker(
    model_id="jina/jina-embeddings-v2-large",
    credentials="jina-api-key"
)

The credentials can also be provided through the JINA_API_KEY environment variable. For the list of supported models, please refer to the following page: https://jina.ai/models

Using OpenAI

em_invoker = build_em_invoker(
    model_id="openai/text-embedding-3-small",
    credentials="sk-..."
)

The credentials can also be provided through the OPENAI_API_KEY environment variable.

Using OpenAI Embeddings API-compatible endpoints (e.g. vLLM)

em_invoker = build_em_invoker(
    model_id="openai/https://my-vllm-url:8000/v1:my-model-name",
    credentials="sk-..."
)

The credentials can also be provided through the OPENAI_API_KEY environment variable.

Using Azure OpenAI

em_invoker = build_em_invoker(
    model_id="azure-openai/https://my-resource.openai.azure.com/openai/v1:my-deployment",
    credentials="azure-api-key"
)

The credentials can also be provided through the AZURE_OPENAI_API_KEY environment variable.

Using TwelveLabs

em_invoker = build_em_invoker(
    model_id="twelvelabs/Marengo-retrieval-2.7",
    credentials="tlk_..."
)

The credentials can also be provided through the TWELVELABS_API_KEY environment variable.

Using Voyage

em_invoker = build_em_invoker(
    model_id="voyage/voyage-3.5-lite",
    credentials="sk-..."
)

The credentials can also be provided through the VOYAGE_API_KEY environment variable.

Using LangChain

em_invoker = build_em_invoker(
    model_id="langchain/langchain_openai.OpenAIEmbeddings:text-embedding-3-small",
    credentials={"api_key": "sk-..."}
)

The credentials can also be provided through various environment variables depending on the LangChain module being used. For the list of supported providers and the supported environment variables credentials, please refer to the following page: https://python.langchain.com/docs/integrations/text_embedding/

Security warning

Please provide the EM invoker credentials ONLY to the credentials parameter. Do not put any kind of credentials in the config parameter as the content of the config parameter will be logged.

build_lm_invoker

Defines a convenience function to build a language model invoker.

Authors

Henry Wicaksono (henry.wicaksono@gdplabs.id) Delfia N. A. Putri (delfia.n.a.putri@gdplabs.id)

References

NONE

build_lm_invoker(model_id, credentials=None, config=None)

Build a language model invoker based on the provided configurations.

Parameters:

Name Type Description Default
model_id str | ModelId

The model id, can either be a ModelId instance or a string in a format defined in the following page: https://gdplabs.gitbook.io/sdk/resources/supported-models#language-models-lms

required
credentials str | dict[str, Any] | None

The credentials for the language model. Can either be: 1. An API key. 2. A path to a credentials JSON file, currently only supported for Google Vertex AI. 3. A dictionary of credentials, currently supported for Bedrock and LangChain. Defaults to None, in which case the credentials will be loaded from the appropriate environment variables.

None
config dict[str, Any] | None

Additional configuration for the language model. Defaults to None.

None

Returns:

Name Type Description
BaseLMInvoker BaseLMInvoker

The initialized language model invoker.

Raises:

Type Description
ValueError

If the provider is invalid.

Usage examples

Using Anthropic

lm_invoker = build_lm_invoker(
    model_id="anthropic/claude-3-5-sonnet-latest",
    credentials="sk-ant-api03-..."
)

The credentials can also be provided through the ANTHROPIC_API_KEY environment variable.

Using Bedrock

lm_invoker = build_lm_invoker(
    model_id="bedrock/us.anthropic.claude-sonnet-4-20250514-v1:0",
    credentials={
        "access_key_id": "Abc123...",
        "secret_access_key": "Xyz123...",
    },
)

The credentials can also be provided through the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables.

Using Datasaur LLM Projects Deployment API

lm_invoker = build_lm_invoker(
    model_id="datasaur/https://deployment.datasaur.ai/api/deployment/teamId/deploymentId/",
    credentials="..."
)

The credentials can also be provided through the DATASAUR_API_KEY environment variable.

Using Google Gen AI (via API key)

lm_invoker = build_lm_invoker(
    model_id="google/gemini-2.5-flash-lite",
    credentials="AIzaSyD..."
)

The credentials can also be provided through the GOOGLE_API_KEY environment variable.

Using Google Vertex AI (via service account)

lm_invoker = build_lm_invoker(
    model_id="google/gemini-2.5-flash-lite",
    credentials="/path/to/google-credentials.json"
)

Providing credentials through environment variable is not supported for Google Vertex AI.

Using OpenAI

lm_invoker = build_lm_invoker(
    model_id="openai/gpt-5-nano",
    credentials="sk-..."
)

The credentials can also be provided through the OPENAI_API_KEY environment variable.

Using OpenAI with Chat Completions API

lm_invoker = build_lm_invoker(
    model_id="openai-chat-completions/gpt-5-nano",
    credentials="sk-..."
)

The credentials can also be provided through the OPENAI_API_KEY environment variable.

Using OpenAI Responses API-compatible endpoints (e.g. SGLang)

lm_invoker = build_lm_invoker(
    model_id="openai/https://my-sglang-url:8000/v1:my-model-name",
    credentials="sk-..."
)

The credentials can also be provided through the OPENAI_API_KEY environment variable.

Using OpenAI Chat Completions API-compatible endpoints (e.g. Groq)

lm_invoker = build_lm_invoker(
    model_id="openai-chat-completions/https://api.groq.com/openai/v1:llama3-8b-8192",
    credentials="gsk_..."
)

The credentials can also be provided through the OPENAI_API_KEY environment variable.

Using Azure OpenAI

lm_invoker = build_lm_invoker(
    model_id="azure-openai/https://my-resource.openai.azure.com/openai/v1:my-deployment",
    credentials="azure-api-key"
)

The credentials can also be provided through the AZURE_OPENAI_API_KEY environment variable.

Using LangChain

lm_invoker = build_lm_invoker(
    model_id="langchain/langchain_openai.ChatOpenAI:gpt-4o-mini",
    credentials={"api_key": "sk-..."}
)

The credentials can also be provided through various environment variables depending on the LangChain module being used. For the list of supported providers and the supported environment variables credentials, please refer to the following table: https://python.langchain.com/docs/integrations/chat/#featured-providers

Using LiteLLM

os.environ["OPENAI_API_KEY"] = "sk-..."
lm_invoker = build_lm_invoker(
    model_id="litellm/openai/gpt-4o-mini",
)

For the list of supported providers, please refer to the following page: https://docs.litellm.ai/docs/providers/

Using Portkey

Portkey supports multiple authentication methods with strict precedence order. Authentication methods are mutually exclusive and cannot be combined.

Config ID Authentication (Highest Precedence)

lm_invoker = build_lm_invoker(
    model_id="portkey/any-model",
    credentials="portkey-api-key",
    config={"config": "pc-openai-4f6905"}
)

Model Catalog Authentication (Combined Format)

lm_invoker = build_lm_invoker(
    model_id="portkey/@openai-custom/gpt-4o",
    credentials="portkey-api-key"
)

Model Catalog Authentication (Separate Parameters)

lm_invoker = build_lm_invoker(
    model_id="portkey/gpt-4o",
    credentials="portkey-api-key",
    config={"provider": "@openai-custom"}
)

Direct Provider Authentication

lm_invoker = build_lm_invoker(
    model_id="portkey/gpt-4o",
    credentials={
        "portkey_api_key": "portkey-api-key",
        "api_key": "sk-...",  # Provider's API key
        "provider": "openai"  # Direct provider (no '@' prefix)
    }
)

Custom Host Override

lm_invoker = build_lm_invoker(
    model_id="portkey/@custom-provider/gpt-4o",
    credentials="portkey-api-key",
    config={"custom_host": "https://your-custom-endpoint.com"}
)

The Portkey API key can also be provided through the PORTKEY_API_KEY environment variable. For more details on authentication methods, please refer to: https://portkey.ai/docs/product/ai-gateway/universal-api

Using xAI

lm_invoker = build_lm_invoker(
    model_id="xai/grok-3",
    credentials="xai-..."
)

The credentials can also be provided through the XAI_API_KEY environment variable. For the list of supported models, please refer to the following page: https://docs.x.ai/docs/models

Security warning

Please provide the LM invoker credentials ONLY to the credentials parameter. Do not put any kind of credentials in the config parameter as the content of the config parameter will be logged.

build_lm_request_processor

Defines a convenience function to build a language model request processor.

Authors

Henry Wicaksono (henry.wicaksono@gdplabs.id)

References

NONE

build_lm_request_processor(model_id, credentials=None, config=None, system_template='', user_template='', key_defaults=None, output_parser_type='none')

Build a language model invoker based on the provided configurations.

Parameters:

Name Type Description Default
model_id str | ModelId

The model id, can either be a ModelId instance or a string in a format defined in the following page: https://gdplabs.gitbook.io/sdk/resources/supported-models#language-models-lms

required
credentials str | dict[str, Any] | None

The credentials for the language model. Can either be: 1. An API key. 2. A path to a credentials JSON file, currently only supported for Google Vertex AI. 3. A dictionary of credentials, currently supported for Bedrock and LangChain. Defaults to None, in which case the credentials will be loaded from the appropriate environment variables.

None
config dict[str, Any] | None

Additional configuration for the language model. Defaults to None.

None
system_template str

The system prompt template. May contain placeholders enclosed in curly braces {}. Defaults to an empty string.

''
user_template str

The user prompt template. May contain placeholders enclosed in curly braces {}. Defaults to an empty string.

''
key_defaults dict[str, str] | None

Default values for the keys in the prompt templates. Applied when the corresponding keys are not provided in the runtime input. Defaults to None, in which case no default values will be assigned to the keys.

None
output_parser_type str

The type of output parser to use. Supports "json" and "none". Defaults to "none".

'none'

Returns:

Name Type Description
LMRequestProcessor LMRequestProcessor

The initialized language model request processor.

Raises:

Type Description
ValueError

If the provided configuration is invalid.

Usage examples
# Basic usage
lm_request_processor = build_lm_request_processor(
    model_id="openai/gpt-4o-mini",
    credentials="sk-...",
    user_template="{query}",
)

With custom LM invoker configuration

config = {
    "default_hyperparameters": {"temperature": 0.5},
    "tools": [tool_1, tool_2],
}

lm_request_processor = build_lm_request_processor(
    model_id="openai/gpt-4o-mini",
    credentials="sk-...",
    config=config,
    user_template="{query}",
)

With custom prompt builder configuration

lm_request_processor = build_lm_request_processor(
    model_id="openai/gpt-4o-mini",
    credentials="sk-...",
    system_template="Talk like a {role}.",
    user_template="{query}",
    key_defaults={"role": "pirate"},
)

With output parser

lm_request_processor = build_lm_request_processor(
    model_id="openai/gpt-4o-mini",
    credentials="sk-...",
    user_template="{query}",
    output_parser_type="json",
)
Security warning

Please provide the LM invoker credentials ONLY to the credentials parameter. Do not put any kind of credentials in the config parameter as the content of the config parameter will be logged.

build_output_parser

Defines a convenience function to build an output parser.

Authors

Henry Wicaksono (henry.wicaksono@gdplabs.id)

References

NONE

build_output_parser(output_parser_type)

Build an output parser based on the provided configurations.

Parameters:

Name Type Description Default
output_parser_type str

The type of output parser to use. Supports "json" and "none".

required

Returns:

Name Type Description
BaseOutputParser BaseOutputParser | None

The initialized output parser.

Raises:

Type Description
ValueError

If the provided type is not supported.

Usage examples

Using JSON output parser

output_parser = build_output_parser(output_parser_type="json")

Not using output parser

output_parser = build_output_parser(output_parser_type="none")