No op step
A step that does nothing.
References
NONE
NoOpStep(name, retry_config=None, error_handler=None, cache_store=None, cache_config=None)
Bases: BasePipelineStep
A step that does nothing.
This step is useful when you want to add a step that does not perform any processing. For example, you can use this step to implement a toggle pattern for a certain component.
Example:
pipeline = (
step_a
| ConditionalStep(
name="branch",
branches={
"execute": step_b,
"continue": NoOpStep("no_op")
},
condition=lambda x: "execute" if x["should_execute"] else "continue"
)
| step_c
)
Attributes:
| Name | Type | Description |
|---|---|---|
name |
str
|
A unique identifier for this pipeline step. |
Initializes a new pipeline step.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name |
str
|
A unique identifier for the pipeline step. |
required |
retry_config |
RetryConfig | None
|
Configuration for retry behavior using
GLLM Core's RetryConfig. Defaults to None, in which case no retry config is applied.
The RetryConfig is automatically converted to LangGraph's RetryPolicy when needed for internal use.
Note that |
None
|
error_handler |
BaseStepErrorHandler | None
|
Strategy to handle errors during execution. Defaults to None, in which case the RaiseStepErrorHandler is used. |
None
|
cache_store |
'BaseCache' | None
|
The cache store to use for caching step results. Defaults to None. If None, no caching will be used. |
None
|
cache_config |
dict[str, Any] | None
|
Configuration for the cache store. 1. key_func: A function to generate cache keys. If None, the cache instance will use its own key function. 2. name: The name of the cache. If None, the cache instance will use its own key function. 3. ttl: The time-to-live for the cache. If None, the cache will not have a TTL. 4. matching_strategy: The strategy for matching cache keys. If None, the cache instance will use "exact". 5. matching_config: Configuration for the matching strategy. If None, the cache instance will use its own default matching strategy configuration. |
None
|
Caching Mechanism
When a cache_store is provided, the step's execution method is automatically wrapped with a cache decorator. This means: 1. Before execution, the cache is checked for existing results based on input parameters 2. If a cached result exists and is valid, it's returned immediately 3. If no cached result exists, the step executes normally and the result is cached 4. Cache keys are generated from the step's input state and configuration 5. The cache name defaults to "step_{step_name}" if not specified
execute(state, runtime)
async
Executes this step, which does nothing.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
state |
dict[str, Any]
|
The current state of the pipeline. |
required |
runtime |
Runtime[dict[str, Any] | BaseModel]
|
Runtime information for this step's execution. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
None |
None
|
This step does not modify the pipeline state. |